cugall azol

KUWAIT UNIVERSITY

Kuwait University
College of Engineering and Petroleum %

ME319 MECHATRONICS
PART I: THE BRAINS — MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC

LECTURE 3: DIGITAL LOGIC

Spring 2021
Ali AlSaibie

Lecture Plan

* Objectives:
* Review the basics of Logic Gates
* Review the basics of bitwise logical operations in C/C++

Part I: The Brains — L3

Logic Gates Truth Table

Name NOT AND NAND OR NOR XOR XNOR
Alg. Expr. A AB AB A+ B A+ B Ao B Ao B
oot | oo |- |2 S EPE
moet | o | L | LDe-| D~ | x| - | D~
- A| X |BA|X|B A|X|B A|X | B A|X|B A|X | B A|X
ruc 011 |0 0l0]| 0o 0l1]|0o0l0l|0o0l1T| 0000|001
Table 1] 0 o 1/o0 |0 1|/11]0 1|10 1l0] o0 1|10 1]0
1 olol 1 o0ol1 |1 o0]l1]1o0l0o]1o0l1]1 0]o0
1t 1101 1101 111 1lol1 1lo]1 1]1

Part I: The Brains — L3

Digital Logic

* In its simplest form, a computer is composed of
* Transistors: states (1 or 0), and
* Logic gates: operations on 1s and Os

* Logic gates are built from electrical circuit

] ——

O_

AND Gate Symbol

Part I: The Brains — L3

The building blocks of computers

* Millions of transistors and logic gates build memory and logic to form
* Basic operations
* Programming Languages translate complex algorithms to basic
operations
* When you program in: int a = 8 + 2;, this code ultimately translates to:
« Memory being allocated (transistor states being changed),

* Current passing through transistors: 1 (or not passing through: 0) and
going through a combination of logic gates to perform:

* Memory assignment, retrieval, addition, allocation

* From basic add / subtract / store / compare etc., we stack higher level
algorithms: complex operating systems, flight control systems, financial

trading algorithms, etc. A

Part I: The Brains — L3

Complete the Logic Gate sequence Example 1

NAND
0 {>07 R

NOT D

Part I: The Brains — L3

Math Shortcuts

* When working with unsigned binary numbers:
* Shifting the bits one location to the right, halves the number

* Shifting the bits one location to the left, doubles the number
00001100, = 12;, & 00000110, = 65, & 00000011, = 34,

* This technique can be used to produce faster mathematical power operations,
but can cause loss of precision or overflow

Left Shift: 11000000, = 192, = 10000000, = 64,,: incorrect due to overflow
Right Shift: 00000011, = 3;, = 00000001, = 14,
* Overflow. storing a number larger than what memory location can handle

Part I: The Brains — L3

Bitwise Operations

* Manipulating memory and variables on a bit level is essential in embedded
programming

Operator Name Description

& Bitwise AND Performs AND operation on each corresponding bit of two
arguments and returns result

| Bitwise OR Performs OR operation on each corresponding bit of two
arguments and returns result

A Bitwise Exclusive OR Performs Exclusive OR operation on each corresponding bit of
two arguments and returns result

~ Bitwise NOT Performs a NOT operation on all the bits of an argument and
returns the result

<<or>> Rightshift or Left Shift bits of argument 1 right/left by argument 2 places

shift

Part I: The Brains — L3

Bitwise Operations - Logical

* Numbers can be expressed in binary, hex as well as decimal.
* Bit-level logic can be performed as shown.

#include <cstdint>
#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

uint8 t a = 0b00001000;

uint8 t b = 0b10001111;

uint8 t ¢ = OxF7; /* 11110111 */

uint8 t rl = a & b; /* AND operation, result: 00001000 */
uint8 t r2 = a | ¢; /* OR operation, result: 11111111 */
uint8 t r3 = a ~ b; /* XOR operation, result: 10000111 */
uint8 t r4 = ~c; /* NOT operation, result: 00001000 */

rl |= b; /* OR operation, result: 10001111 */
return 1;

Part I: The Brains — L3

Bitwise Operations — Bit Shifting

* |t is often convenient, especially in embedded programming, to shift bits left

or right.

#include <cstdint>
#include <iostream>

using namespace std;
int main(int argc, char* argv[]) {
uint8 t a

uint8 t b
uint8 t c¢

Pb00000100;
0b10001111;
OxF7; /* 11110111 */

uint8 t ri
uint8 t r2
uint8 t r3

bitset<8> bin(r3);
cout << hex << bin << endl;
return 1;

a > 2; /* Shift operation, result: 00000001 */
b << 4; /* Shift operation, result: 11110000 */
(a<<1) | c; /* Shift + OR NOR operation, result: 11111111 */

Part I: The Brains — L3

Manipulating Individual Bits

* Given the following binary number: 10101111

 What if you wanted to change the 4" bit to 1: 10101111
* We can assign a new number, but that is not practical
* Instead, we perform a bitwise logical operation

#include <cstdint>
int main(int argc, char* argv[]) {

uint8 t a = 0b10101111;

/* Change the 4th bit to 1 */

a = 0b10111111; /* You can replace the whole number by a new one */

/* Or you can manipulate the individual bit, by performing an OR operation */

a |= o0bo0010000;

/* 0b00010000 is called a bitmask, we can use a shift operator to create a bitmask */
a |= (1<<4); /* OR operation with 1 shifted to the left 4 bits: 00010000 */

return 1;

Part I: The Brains — L3

Manipulating Multiple Bits

* We can extend the bitwise logical operations to multiple bits
» Examples of: Setting, Clearing and Toggling Bits

#include <cstdint>

#include <iostream>

#include <bitset>

using namespace std;

int main(int argc, char* argv[]) {

uint8 t a = 0b00101000;
/* Change the 0th and 4th bits to 1 */

a |= (1<<4) | 1; /* OR Operation with Bitmask: 00010000 | 00000001 = 00010001 */
/* Change the 3rd and 5th bits to @ */

a &= ~((1<<5) | (1<<3)); /* AND Operation with NOT of bitmask */
/* Toggle the 7th bit */

a "= (1<<7); /* XOR: Exclusive OR Operation with the bitmask */

bitset<8> binarynumber(a);

cout << binarynumber << endl; /* Output: 10010001 */
return 1;

Part I: The Brains — L3

Complete the following code:

Example 2

int main(int argc, char* argv[]) {

uint8 t a = OxFo;
/* Toggle all the bits of a */

a

/* Set the 1st nibble (first 4 bits) */
a

/* Clear the 2nd nibble */

a

return 1;

cugall denla
KUWAIT UNIVERSITY

Part I: The Brains — L3

