
ME 319 Part I: The Brains – L3 Page: 1

Kuwait University
College of Engineering and Petroleum

Spring 2021

ME319 MECHATRONICS
PART I: THE BRAINS – MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC
LECTURE 3: DIGITAL LOGIC

Ali AlSaibie

ME 319 Part I: The Brains – L3 Page: 2

Lecture Plan
• Objectives:

• Review the basics of Logic Gates
• Review the basics of bitwise logical operations in C/C++

ME 319 Part I: The Brains – L3 Page: 3

Logic Gates Truth Table

ME 319 Part I: The Brains – L3 Page: 4

Digital Logic
• In its simplest form, a computer is composed of

• Transistors: states (1 or 0), and
• Logic gates: operations on 1s and 0s

• Logic gates are built from electrical circuit

ME 319 Part I: The Brains – L3 Page: 5

The building blocks of computers
• Millions of transistors and logic gates build memory and logic to form

• Basic operations
• Programming Languages translate complex algorithms to basic

operations
• When you program in: int 𝑎 = 8 + 2; , this code ultimately translates to:

• Memory being allocated (transistor states being changed),
• Current passing through transistors: 1 (or not passing through: 0) and

going through a combination of logic gates to perform:
• Memory assignment, retrieval, addition, allocation

• From basic add / subtract / store / compare etc., we stack higher level
algorithms: complex operating systems, flight control systems, financial
trading algorithms, etc.

ME 319 Part I: The Brains – L3 Page: 6

Example 1Complete the Logic Gate sequence

ME 319 Part I: The Brains – L3 Page: 7

Math Shortcuts
• When working with unsigned binary numbers:

• Shifting the bits one location to the right, halves the number
• Shifting the bits one location to the left, doubles the number

000011002 = 1210 ⇔ 000001102 = 610 ⇔ 000000112 = 310
• This technique can be used to produce faster mathematical power operations,

but can cause loss of precision or overflow
Left Shift: 110000002 = 19210 ⇒ 100000002 = 6410: incorrect due to overflow

Right Shift: 000000112 = 310 ⇒ 000000012 = 110
• Overflow: storing a number larger than what memory location can handle

ME 319 Part I: The Brains – L3 Page: 8

Bitwise Operations
• Manipulating memory and variables on a bit level is essential in embedded

programming
Operator Name Description
& Bitwise AND Performs AND operation on each corresponding bit of two

arguments and returns result
| Bitwise OR Performs OR operation on each corresponding bit of two

arguments and returns result
^ Bitwise Exclusive OR Performs Exclusive OR operation on each corresponding bit of

two arguments and returns result
~ Bitwise NOT Performs a NOT operation on all the bits of an argument and

returns the result
<< or >> Right shift or Left

shift
Shift bits of argument 1 right/left by argument 2 places

ME 319 Part I: The Brains – L3 Page: 9

Bitwise Operations - Logical
• Numbers can be expressed in binary, hex as well as decimal.
• Bit-level logic can be performed as shown.

5

#include <cstdint>

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

 uint8_t a = 0b00001000;

 uint8_t b = 0b10001111;

 uint8_t c = 0xF7; /* 11110111 */

 uint8_t r1 = a & b; /* AND operation, result: 00001000 */

 uint8_t r2 = a | c; /* OR operation, result: 11111111 */

 uint8_t r3 = a ^ b; /* XOR operation, result: 10000111 */

 uint8_t r4 = ~c; /* NOT operation, result: 00001000 */

 r1 |= b; /* OR operation, result: 10001111 */

 return 1;

}

ME 319 Part I: The Brains – L3 Page: 10

Bitwise Operations – Bit Shifting

5

#include <cstdint>

#include <iostream>

using namespace std;

int main(int argc, char* argv[]) {

 uint8_t a = 0b00000100;

 uint8_t b = 0b10001111;

 uint8_t c = 0xF7; /* 11110111 */

 uint8_t r1 = a >> 2; /* Shift operation, result: 00000001 */

 uint8_t r2 = b << 4; /* Shift operation, result: 11110000 */

 uint8_t r3 = (a<<1) | c; /* Shift + OR NOR operation, result: 11111111 */

 bitset<8> bin(r3);

 cout << hex << bin << endl;
 return 1;

}

• It is often convenient, especially in embedded programming, to shift bits left
or right.

ME 319 Part I: The Brains – L3 Page: 11

Manipulating Individual Bits
• Given the following binary number: 10101111
• What if you wanted to change the 4th bit to 1: 10101111

• We can assign a new number, but that is not practical
• Instead, we perform a bitwise logical operation

5

#include <cstdint>
int main(int argc, char* argv[]) {

 uint8_t a = 0b10101111;
 /* Change the 4th bit to 1 */
 a = 0b10111111; /* You can replace the whole number by a new one */
 /* Or you can manipulate the individual bit, by performing an OR operation */
 a |= 0b00010000;
 /* 0b00010000 is called a bitmask, we can use a shift operator to create a bitmask */
 a |= (1<<4); /* OR operation with 1 shifted to the left 4 bits: 00010000 */
 return 1;
}

ME 319 Part I: The Brains – L3 Page: 12

Manipulating Multiple Bits
• We can extend the bitwise logical operations to multiple bits

• Examples of: Setting, Clearing and Toggling Bits

5

#include <cstdint>

#include <iostream>

#include <bitset>

using namespace std;

int main(int argc, char* argv[]) {

 uint8_t a = 0b00101000;

 /* Change the 0th and 4th bits to 1 */

 a |= (1<<4) | 1; /* OR Operation with Bitmask: 00010000 | 00000001 = 00010001 */

 /* Change the 3rd and 5th bits to 0 */

 a &= ~((1<<5) | (1<<3)); /* AND Operation with NOT of bitmask */

 /* Toggle the 7th bit */

 a ^= (1<<7); /* XOR: Exclusive OR Operation with the bitmask */

 bitset<8> binarynumber(a);

 cout << binarynumber << endl; /* Output: 10010001 */

 return 1;

}

ME 319 Part I: The Brains – L3 Page: 13

Example 2Complete the following code:

5

int main(int argc, char* argv[]) {

 uint8_t a = 0xF0;
 /* Toggle all the bits of a */

 a

 /* Set the 1st nibble (first 4 bits) */

 a

 /* Clear the 2nd nibble */

 a

 return 1;
}

