Kuwait University
College of Engineering and Petroleum

cugall azol

KUWAIT UNIVERSITY

ME319 MECHATRONICS
PART I: THE BRAINS — MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC

LECTURE 5: GENERAL PURPOSE INPUT OUTPUT PERIPHERAL

Spring 2021
Ali AlSaibie

Lecture Plan

* Objectives:
* Review the basic components of the GPIO Peripheral
« Become familiar with the microcontroller reference manual
» Walk through a blinky routine at different abstraction levels

Part I: The Brains — L5

GPIO: General Purpose Input Output

* Basic way to interface MCU with outside world

* Direction: Input or Output

* Data (Value): Logic High or Low — Written (Output). Read (Input)

* GPIO Pins belong to Ports, On STM32F401x there are up to 16 pins per port

* STM32F401x
» Most Pins are GPIO by default (on reset)
« Some Pins are set for special functions on reset (JTAG)
* 5\/-Tolerant
* 15 GPIO Blocks. Ports A - Port Q [No Port | or Port O]
* Internal weak pull-up or pull-down resisters

Part I: The Brains — L5

GPIO: General Purpose Input Output - Example

* PA1 and PAO are both configured as GPIO Pins

* PA1 reads: V,
* PA1 Set as output and PAO as Input A
* When PA1 is High (Logic 1): LED turns on P
« When Switch is pressed: PAO reads logic 1 (High) Y’ LED
* The GPIO Peripheral usually has:
, which have:

Part I: The Brains — L5

Alternate Functions

« GPIO Pins also refer to programmable pins in general (non-fixed func pins: GND, 5V, etc)

* GPIO pins can be configured for alternative functions such as:
— UART,I2C,ADC,DAC etc.
— Table 9 in the datasheet lists the alternate functions each pin can have
— A pin can serve only one function at a time.
* E.g. Pins PAO and PA1 can have one of 4 alternative digital functions
— Timer2 Ch 1, Timer 5 Ch 2, USART Clear To Send, or Event Out (Interrupt Pin)

Table 9. Alternate function mapping

AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 | AF11 | AF12 | AF13 | AF14| AF15
Port
TIM/ SPI/SPI2/ SPI3/12S3/
SYS_AF | TIMU/TIM2 Tlh;r::fm'?;’MS TIM10/ I2('.:I;{:I:23{12! 12S2/SPI3/ g,‘::g;lfzssz;; USART1/ | USARTE 'Izz‘ég’ OTG1_FS SDIO
TIM11 12S3/SPI4 USART2
TIM2_CH1/ |y 0e USART2 EVENT
PAD TIM2_ETR | TTMP_CHI cTS ouT
o USART2 EVENT
PA1 TIM2_CH2 | TIM5_CH2 e ouT

Part I: The Brains — L5

Current Capabilities

* Pins can drive low current external devices, such as LEDs or other integrated
circuits

Table 12. Current characteristics

Symbol Ratings Max. Unit
2lypp Total current into sum of all Vpp power lines (source)(“” 160
2 lygg Total current out of sum of all Vgg , ground lines (sink)™) -160
DD Maximum current into each Vpp power line (source)(!) 100
l/ss Maximum current out of each Vg , ground line (sink)™) -100
Qutput current sunk by any I/O and control pin 25

o Qutput current sourced by any I/O and control pin -25 mA
Total output current sunk by sum of all I/O and control pins (2) 120
*ho Total output current sourced by sum of all I/Os and control pinsm -120

cugall denla
KUWAIT UNIVERSITY

Part I: The Brains — L5

Current Capabilities

* To drive high current devices such as a light bulb, an external driver is required.
Pin acts as signal trigger v
S

* E.g. Use a transistor to light LED A
* Drive the transistor via pin

Part I: The Brains — L5

Pull Up and Pull Down Resistors

* To ensure deterministic binary logic, a pull up or
pull down resistor is used.

3.3V Positive Logic, external 3.3V Positive Logic, internal

PAN PAN
* Positive Logic: Pin normally connected to ground | ST™32 / T
through pu//-downresistor, so pin reads low. PAS 0 |oas
When source is connected, pin reads high. i E

* Negative Logic: Pin normally connected to
source throu gh pu//-up resistor, connectin g to Negative Logic, external Negative Logic, internal

ground sets pin low. E‘FV 33V STM32
. . . STM32 .
 Weak:- high resistance (weak current drain) i[;l— - meAS
* The resistor guarantees the logic is inverted = = %
when the source is not connected, and that the =
value is not “floating” gl amst

Part I: The Brains — L5

MCU Registers: An Overview

* Program code interacts with hardware through changing bits inside registers
* A register is a memory location inside the microcontroller

* Interface with a microcontroller is done through registers, whether reading or
writing to them. Registers can be Read-0Only, or Read-Write

* The STM32F401RE is a 32bit microcontroller, and so each register is
technically composed of 32 bit-fields.

* A typical register address looks like

* The above happens to be the base address for GPIO Port A

* GPIO registers are listed by their offset. The same offset is applied over
whichever GPIO Port base address ‘

Part I: The Brains — L5

Example Register

 Here is a the GPIO Mode register (REFO2 _STM32 Reference Manual)
« Common to all GPIO Ports (every GPIO Port has a mode register)

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)
Address offset: 0x00
Reset values:
Example: we write O1 in * 0x0C00 0000 for port A
-) 0 » 0x0000 0280 for port B
bits [.11-10] if we want 1'.0 e 0x0000 0000 for other ports
set Pin 5 as an output pin
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ThIS IS bClSiCCl”y Wh(l"' The MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODER9[1:0] | MODERS[1:0]
AI"dUInOfUHCTIOHZ rw|rw rw‘rw rW|rw rW|rW rw|rw rw‘rw rw‘rw rw‘rw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
] MODER7[1:0] | MODERS6[1:0] | MODER5[1:0] | MODER4[1:0] | MODER3[1:0] | MODER2[1:0] | MODER1[1:0] | MODERO[1:0]
pinMode(PA5, OUTPUT);
doeS Bits 2y:2y+1 MODERYy[1:0]: Port x configuration bits (y = 0..15)
These bits are written by software to configure the 1/O direction mode.

00: Input (reset state)

01: General purpose output mode
10: Alternate function mode

11: Analog mode

Part I: The Brains — L5

Register: Addressing

* On STM32 MCUs, a base address is given and the list of offsets
* Given GPIO Port A base address:

* And the GPIOs mode registers (GPIOx_MODER) address offset is 0x00, and the
output data register (GPIOx _ODR) address offset is Ox14

Then:
* GPIO mode register address for Port A (GPIOA_MODER) is

* GPIO output type register address for Port A (GPIOA_QODR) is

e If the base address of GPIO Port B is: 0x40020400,
* What is the GPIOB _ODR address? ‘

Part I: The Brains — L5

Blinky Example on STM32Nucleo

* To execute a basic blinky routine, we need to do the following on
STM32F401RE. The LED is connected to PA5: Port APin 5

1. Enable the GPIO Port A clock (See RCC Register)
2. Set the GPIO Port A Pin 5 is output (See GPIOA_MODER Register)

3. Set the GPIO Port A Pin 5 output to 1 (High) to turn LED On, orsetitto O
(Low) to switch it off
4. Have some delay routine in between the Ons and Offs

Let's see the relevant registers and see how we can execute a blinky code.
The concepts learned will extend to advanced peripherals.

Part I: The Brains — L5

RCC Register

* RCC: Reset and Clock Control. Base address: 0x4002 3800
* By default, peripherals are switched off (clock source disabled)
 We can turn each peripheral clock on/off separately.

» Specifically, the RCC_AHB1 peripheral clock enable register is where GPIO Port

A is enabled.
6.3.9 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Bit0 GPIOAEN: IO port A clock enable | Address offset: 0x30

Set and cleared by software. Reset value: 0x0000 0000
0: 10 port A clock disabled :
_ P Access: no wait state, word, half-word and byte access.
1: 10 port A clock enabled
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DMAZEN [DMA1EN
Reserved Reserved
w w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GPIOH GPIOD | GPIOC |GPIOB|GPIOA
CRCEN GPIOEEN
Reserved Reserved EN Reserved EN EN EN EN
"w "w w w "w "w w

Part I: The Brains — L5

GPIO Mode Register

* Through the GPIO Mode register we set individual pins either as: Input, Output,
Analog or Alternate Function (AF, e.g. UART, USB, PWM, TIM, etc)

8.4.1 GPIO port mode register (GPIOx_MODER) (x = A..E and H)
Address offset: 0x00

Reset values:

e 0x0COO0 0000 for port A

e (0x0000 0280 for port B

e 0x0000 000Q for other ports

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] | MODER14[1:0] | MODER13[1:0] | MODER12[1:0] | MODER11[1:0] | MODER10[1:0] | MODER9[1:0] | MODERS[1:0]

w w w w w w w w w w w w w w w r'w

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

MODER7[1:0] | MODERS6[1:0] | MODER5[1:0] | MODER4[1:0] | MODER3[1:0] | MODER2[1:0] | MODER1[1:0] | MODERO[1:0]

"w I\ "w w w w w w "w w w w w "w w rw

Bits 2y:2y+1 MODERYy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the /O direction mode.

00: Input (reset state)

01: General purpose output mode

10: Alternate function mode) .
cugall denly

11: Analog mode KUWAIT UNIVERSITY

Part I: The Brains — L5

GPIO ODR Register

* ODR: Output Data Register
* If the pinis set as output, write to this register to set respective bit high/low

8.4.6 GPIO port output data register (GPIOx_ODR) (x = A..E and H)

Address offset: Ox14
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 | ODR14 | ODR13 | ODR12 | ODR11 | ODR10 | ODRS | ODR8 | ODR7 | ODR6 | ODR5 | ODR4 | ODR3 | ODR2 | ODR1 | ODRO

rw nw nw w nw rw w rw nw nw w nw nw w nw nw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRYy: Port output data (y = 0..15)
These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the
GPIOx_BSRR register (x = A..E and H).

cugall denla
KUWAIT UNIVERSITY

Part I: The Brains — L5

GPIO IDR

* There are other registers for manipulating GPIO, which you can review on the
Reference Manual (REF02)

* The GPIO_IDR: Input Data Register for example, is where you would read the
state of an input pin.

8.4.5 GPIO port input data register (GPIOx_IDR) (x = A..E and H)

Address offset: 0x10
Reset value: 0x0000 XXXX (where X means undefined)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Reserved
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDR15 | IDR14 | IDR13 | IDR12 | IDR11 | IDR10 | IDR9 | IDR8 | IDR7 | IDR6 | IDR5 | IDR4 | IDR3 | IDR2 | IDR1 | IDRO
r r r r r r r r r r r r r r r r
Bits 31:16 Reserved, must be kept at reset value. 4
Bits 15:0 IDRYy: Port input data (y = 0..15) ;%
These bits are read-only and can be accessed in word mode only. They contain the input 1966+,
value of the corresponding |/O port. cugall agnla

Part I: The Brains — L5

GPIO Registers

* GPIOx_MODER * Input Data Register
 Mode Register (Input, Output, AF, « GPIOx ODR

Analog) » Qutput Data Register
* GPIOx_OTYPER * GPIOx_BSRR
 Output Type (Push-pull or Open- e Bit get / Reset
drain)

* GPIOx_LCKR

« GPIOx_OSPEEDR » Port Configuration Lock

* OQutput Speed (Low, Medium, High,

\lery High Speed) GPIOx_AFRL |
. GPIOx PUPDR * Alternate Function Low Register

* Pull-up/Pull-down Register) GPIOX—AFRF_
. GPIOx_IDR * Alternate

Part I: The Brains — L5

Headerless Blinky Example on STM32Nucleo

* In C, this is the code to perform a blinky routine. Program Size: 220 Bytes

/* Look Ma!, no headers */

#define GPIOARCCR (*(volatile int *)(©0x40023800 + 0x30))
#define GPIOAMODER (*(volatile int *)0x40020000)
#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14))

int main(void) { .
GPIOARCCR |= 1; /* Ref RCC_AHB2ENR register */ programming in C, any '0‘/{'6'” and
/* Set Port A Pin 5 as Output */ you will have to program in
GPIOAMODER |= (1 << 10); /* Ref GPIOx_MODER register */ assembly
while (1) {
é:I?)ZBDrLaET P?r11 ngrsm)*//* fef GPIOX ODR registert/ Not portable to other MCUs in
= << 5); e X_ register :
/* Dumb Delay: wait x number of clock cycles */ the same famlly

for (int k = 0; k<1000000; k++){__asm("nop");}

/* Set LED Pin Low */

GPIOAODR &= ~(1 << 5); /* Ref GPIOx ODR register*/
/* Dumb Delay */

for (int k = 0; k<1000000; k++){__asm("nop");}

Part I: The Brains — L5

Register Address Referencing

« What is this gibberish: #define GPIOAODR (*(volatile int *)(6x40020000 + 0x14))

* This is creating a macro: GPIOAODR to access the GPIO Port A Output Data R

* The address itself is 0x40020014, but in C/C++ we need to tell the compiler
that we want to represent the value in that address, so

1. Cast the hex number to 32bit pointer, now we have a pointer (address only)

#define GPIOAODR (int *)(0x40020000 + 0x14)

2. Make it volatile, to tell compiler that its value might change by hardware

#define GPIOAODR (volatile int *)(0x40020000 + 0x14)

3. Then dereference it using ¥, to act on the value INSIDE the address

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14)) y
?iﬂ&

Part I: The Brains — L5

Blinky Example on STM32Nucleo with stm32f401xe definitions

» The same code as before, but we use the provided macro definitions for the
addresses, address shifts and bitmasks (exactly similar binary as before)

##tinclude "stm32f401xe.h"

int main(void) {
/* Enable GPIOA Clock */
RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; /* Ref RCC_AHB2ENR register */
/* Set Port A Pin 5 as Output */

while (1) {
/* Set LED Pin High */
GPIOA->0DR |= (1 << GPIO ODR _OD5 Pos); /* Ref GPIOx ODR register*/
/* Dumb Delay: wait x number of clock cycles */
for (int k = 0; k<1000000; k++){__asm("nop");}
/* Set LED Pin Low */
GPIOA->0ODR &= ~(1 << GPIO_ODR _OD5 Pos); /* Ref GPIOx ODR register*/
/* Dumb Delay */
for (int k = 0; k<1000000; k++){__asm("nop");}

GPIOA->MODER |= (1 << GPIO MODER_MODE@ Pos); /* Ref GPIOx MODER register */

Still Low-Level C but with
the help of macro
definitions (at no extra
memory overhead charge)

Part I: The Brains — L5

Blinky Example on STM32Nucleo with STM32Cube HAL

* ST provides an abstraction for their MCUs called STM32Cube, this is a blinky
routine using their abstraction. Program Size: 404 Bytes

#include "stm32f4xx_hal.h" /* We don't include the specific stm32f401xe header, but just the HAL */
#include "stm32f4xx.h"
#define LED GPIO CLK_ENABLE() __HAL_RCC_GPIOA CLK_ENABLE()

int main(void){
HAL Init(); /* Initialize the HAL Drivers */

Higher Lower Level C Code, this is the

LED_GPIO CLK_ENABLE(); /* Enable GPIO A Clock */ recommended level for

GPIO_InitTypeDef GPIO_InitStruct; commercial/professional programming of MCU
GPIO InitStruct.Pin = GPIO PIN_5;

GPIO InitStruct.Mode = GPIO MODE_OUTPUT PP;
GPIO InitStruct.Pull = GPIO PULLUP; Portable across other STM32 MCUs
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ HIGH;
HAL GPIO Init(GPIOA, &GPIO InitStruct); /* The pin configuration is done through a function */

while (1)

{
HAL GPIO TogglePin(GPIOA, GPIO PIN 5); /* HAL provides a toggle pin function */
HAL Delay(1000); /* As well as a delay function (milliseconds) */

Part I: The Brains — L5

Blinky Example on STM32Nucleo with Arduino

 And this is the blinky code using the Arduino framework
* Program Size: 12404 Bytes. Abstraction comes at a cost!

#include <Arduino.h>
void setup() { pinMode(LED BUILTIN, OUTPUT); }

void loop() {
digitalWrite(LED BUILTIN, HIGH);
delay(590);
digitalWrite(LED BUILTIN, LOW);
delay(200);
} A good level of abstraction. Good for education /
hobbyist / prototyping / quick lab instruments.

Portable across all MCUs that have an Arduino adoption

Part I: The Brains — L5

Some available frameworks

* CMSIS: Cortex Microcontroller Software Interface Standard
* Developed by ARM
 Universal across other ARM Cortex MCU, not just ST

» SPL: Standard Peripheral Library

* Developed by ST for ST based ARM MCUs

 HAL ST: Hardware Abstraction Layer ST

* Developed by ST for ST based ARM MCUs, with focus on
abstraction

* Arduino
 Developed for hobbyists and prototypists
» Become so popular, that manufacturers provide support for it

Part I: The Brains — L5

Standard Peripheral Library or STM32Cube

» Modern microcontrollers pack a lot of features and peripherals. Configuring
peripherals through direct register access becomes cumbersome for a
programmer.

 Using manufacturers provided standard libraries “framework” is becoming
standard practice.

* Libraries abstract away differences between microcontrollers so code can be
more portable.

* HAL: Hardware Abstraction Layer

» Libraries are practically more proof tested with fewer bugs

Part I: The Brains — L5

How to know what to do?

* Configuring and programming an MCU is not a straight-forward or linear
process.

 There are multiple references and tools that must be used concurrently

* With STM32Nucleo, we use:
» Datasheet
* Reference Manual
« User Manual for STM32 Nucleo
« Framework User Manual (e.g. HAL and LL User Manual)
» Example Code for framework selected
* Consult developer community

Other manufacturers may combine them into one document

Part I: The Brains — L5

Datasheet

* GGives “specs”
r— STM32F401xD STM32F401xE
YI life.augmented

ARM® Cortex®-M4 32b MCU+FPU, 105 DMIPS,
512KB Flash/96KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces

Datasheet - production data

Features _

« Core: ARME} 32-bit CGHE:{@-M-# CPU with - ‘ \ .‘ LE|
FPU, Adaptive real-time accelerator (ART | —_‘ Bl
Accelerator™) allowing O-wait state execution - /
from Flash memory, frequency up to 84 MHz, UFQFEN4E UFBGA100
memory protection unit, {S_Dliﬂallﬁégaﬂm'u LI?]FFT:'1EI:LDIEI104:I11E‘? mmy © 7M™ (7 7 mm)
105 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), ' '
and DSF instructions ¢« Debug mode

« Memories — Senal wire debug (SWD) & JTAG

interfaces

— up to 512 Kbytes of Flash memaory
— up to 96 Kbytes of SRAM

+ Clock, reset and supply management
— 1.7 Vio 3.6 V application supply and I/Os

— Cortex -M4 Embedded Trace Macrocell™
e Upto 81 1/O ports with interrupt capability
— Upto 78 fast I/Os up to 42 MHz !

Part I: The Brains — L5

Reference Manual

* A guide on how to configure and use the MCU

* Registers Information
* Possible Configurations "I I Referenceﬁ“l?uﬁaﬁ

e Used b\/ de\/e|oper5 STM32F401xB/C and STM32F401xD/E
advanced Arm®-based 32-bit MCUs

Introduction

This Reference manual targets application developers. It provides complete information on
how to use the memory and the peripherals of the STM32F401xB/C and STM32F401xD/E
microcontrollers.

STM32F401xB/C and STM32F401xD/E are part of the STM32F401xx family of
microcontrollers with different memory sizes, packages and peripherals.

For ordering information, mechanical and electrical device characteristics refer to the
datasheets.

For information on the Arm® Cortex®-M4 with FPU core, refer to the Cortex®-M4 with FPU
Technical Reference Manual.

Related documents

Available from STMicroelectronics web site (http:/www.st.com):
« STM32F401xB/C datasheet
« STM32F401xD/E datasheet

« For information on the Arm®-M4 core with FPU, refer to the STM32F3xx/Fdxxx Cortex®-
M4 with FPU-M4 programming manual (PM0214).

Part I: The Brains — L5

HAL and LL User Manual

* The HAL and LL User Manual is almost self contained
* |t re-describes the available configurations on the mcu

‘I_ UM1725
’I HRsapmenied User Manual

Description of STM32F4 HAL and LL drivers|

Introduction
STM32Cube™ is STMicroelectronics's original initiative to ease developers' life by reducing 4
development efforts, time and cost. STM32Cube™ covers the STM32 portfolio.

‘%@&"

STM32Cube™ Version 1.x includes:

Part I: The Brains — L5

HAL and LL User Manual: Example on Using the GPIO Driver

29.2.2 How to use this driver

1.

2.

Enable the GPIQ AHB clock using the following function:

_ HAL RCC_GPIOx_CLK_ENABLE().

Configure the GPIO pin(s) using HAL_GPIO_Init().

— Configure the 10 mode using "Mode" member from GPIO_InitTypeDef structure

— Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
structure.

— In case of Qutput or alternate function mode selection: the speed is configured
through "Speed" member from GPIO_InitTypeDef structure.

— In alternate mode is selection, the alternate function connected to the O is
configured through "Alternate” member from GFIO_InitTypeDef structure.

— Analog mode is required when a pin is to be used as ADC channel or DAC
output.

— In case of external interrupt/event selection the "Mode™ member from
GPIO_InitTypeDef structure select the type (interrupt or event) and the
corresponding trigger event (rising or falling or both).

In case of external interrupt/event mode selection, configure NVIC IRQ prionty

mapped to the EXTI line using HAL_NVIC_SetPriarity() and enable it using

HAL_NVIC_EnablelRQ().

To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().

To set/reset the level of a pin configured in output mode use

HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().

Tao lock pin configuration until next reset use HAL _GPIO_LockPin().

During and just after reset, the alternate functions are not active and the GPIO pins

are configured in input floating mode (except JTAG pins).

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose

(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has priority

over the GPIO function.

The HSE oscillator pins OSC_IN/OSC_0OUT can be used as general purpose PHO and

PH1, respectively, when the H5E oscillator is off. The HSE has priority over the GPIO

function.

Part I: The Brains — L5

cugall denla
KUWAIT UNIVERSITY

