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Lecture Plan
• Objectives:

• Review the basic components of the GPIO Peripheral
• Become familiar with the microcontroller reference manual
• Walk through a blinky routine at different abstraction levels
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GPIO: General Purpose Input Output
• Basic way to interface MCU with outside world
• Direction: Input or Output
• Data (Value): Logic High or Low – Written (Output). Read (Input)
• GPIO Pins belong to Ports, On STM32F401x there are up to 16 pins per port
• STM32F401x

• Most Pins are GPIO by default (on reset)
• Some Pins are set for special functions on reset (JTAG)

• 5V-Tolerant
• 15 GPIO Blocks. Ports A - Port Q [No Port I or Port O]
• Internal weak pull-up or pull-down resisters
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GPIO: General Purpose Input Output - Example
• PA1 and PA0 are both configured as GPIO Pins

• PA1 reads: Port A Pin 1
• PA1 Set as output and PA0 as Input
• When PA1 is High (Logic 1): LED turns on
• When Switch is pressed: PA0 reads logic 1 (High)
• The GPIO Peripheral usually has:

• Multiple ports, which have:
• Multiple pins
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Alternate Functions
• GPIO Pins also refer to programmable pins in general (non-fixed func pins: GND, 5V, etc)
• GPIO pins can be configured for alternative functions such as:

– UART,I2C,ADC,DAC etc.
– Table 9 in the datasheet lists the alternate functions each pin can have
– A pin can serve only one function at a time.

• E.g. Pins PA0 and PA1 can have one of 4 alternative digital functions
– Timer2 Ch 1, Timer 5 Ch 2,  USART Clear To Send,  or Event Out (Interrupt Pin) 
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Current Capabilities
• Pins can drive low current external devices, such as LEDs or other integrated 

circuits
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Current Capabilities
• To drive high current devices such as a light bulb, an external driver is required. 

Pin acts as signal trigger
• E.g. Use a transistor to light LED

• Drive the transistor via pin
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Pull Up and Pull Down Resistors
• To ensure deterministic binary logic, a pull up or 

pull down resistor is used.

• Positive Logic: Pin normally connected to ground 
through pull-down resistor, so pin reads low. 
When source is connected, pin reads high.

• Negative Logic: Pin normally connected to 
source through pull-up resistor, connecting to 
ground sets pin low.

• Weak:- high resistance (weak current drain)

• The resistor guarantees the logic is inverted 
when the source is not connected, and that the 
value is not “floating”
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MCU Registers: An Overview
• Program code interacts with hardware through changing bits inside registers
• A register is a memory location inside the microcontroller
• Interface with a microcontroller is done through registers, whether reading or 

writing to them. Registers can be Read-Only, or Read-Write
• The STM32F401RE is a 32bit microcontroller, and so each register is 

technically composed of 32 bit-fields. 
• A typical register address looks like

0x4002 0000
• The above happens to be the base address for GPIO Port A
• GPIO registers are listed by their offset. The same offset is applied over 

whichever GPIO Port base address
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Example Register
• Here is a the GPIO Mode register ( REF02_STM32 Reference Manual)
• Common to all GPIO Ports (every GPIO Port has a mode register)

Example: we write 01 in 
bits [11:10] if we want to 
set Pin 5 as an output pin

This is basically what the 
Arduino function: 

pinMode(PA5, OUTPUT); 

does
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Register: Addressing
• On STM32 MCUs, a base address is given and the list of offsets
• Given GPIO Port A base address: 0x4002 0000
• And the GPIOs mode registers (GPIOx_MODER) address offset is 0x00, and the 

output data register (GPIOx_ODR) address offset is 0x14
Then:
• GPIO mode register address for Port A (GPIOA_MODER) is

0x4002 0000    (0x4002 0000 + 0x00)
• GPIO output type register address for Port A (GPIOA_ODR) is 

0x4002 0014    (0x4002 0000 + 0x14)
• If the base address of GPIO Port B is: 0x40020400, 

• What is the GPIOB_ODR address?
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Blinky Example on STM32Nucleo
• To execute a basic blinky routine, we need to do the following on 

STM32F401RE. The LED is connected to PA5: Port A Pin 5
1. Enable the GPIO Port A clock (See RCC Register)
2. Set the GPIO Port A Pin 5 is output (See GPIOA_MODER Register)
3. Set the GPIO Port A Pin 5 output to 1 (High) to turn LED On, or set it to 0 

(Low) to switch it off
4. Have some delay routine in between the Ons and Offs

Let’s see the relevant registers and see how we can execute a blinky code.
The concepts learned will extend to advanced peripherals.
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RCC Register
• RCC: Reset and Clock Control. Base address: 0x4002 3800 
• By default, peripherals are switched off (clock source disabled)
• We can turn each peripheral clock on/off separately. 
• Specifically, the RCC_AHB1 peripheral clock enable register is where GPIO Port 

A is enabled. 
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GPIO Mode Register
• Through the GPIO Mode register we set individual pins either as: Input, Output, 

Analog or Alternate Function (AF, e.g. UART, USB, PWM, TIM, etc)
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GPIO ODR Register
• ODR: Output Data Register
• If the pin is set as output, write to this register to set respective bit high/low
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GPIO IDR
• There are other registers for manipulating GPIO, which you can review on the 

Reference Manual (REF02)
• The GPIO_IDR: Input Data Register for example, is where you would read the 

state of an input pin. 
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GPIO Registers
• GPIOx_MODER

• Mode Register (Input, Output, AF, 
Analog)

• GPIOx_OTYPER
• Output Type (Push-pull or Open-

drain)
• GPIOx_OSPEEDR

• Output Speed (Low, Medium, High, 
Very High Speed)

• GPIOx_PUPDR
• Pull-up/Pull-down Register

• GPIOx_IDR

• Input Data Register
• GPIOx_ODR

• Output Data Register
• GPIOx_BSRR

• Bit Set / Reset
• GPIOx_LCKR

• Port Configuration Lock
• GPIOx_AFRL

• Alternate Function Low Register
• GPIOx_AFRH

• Alternate Function High Register
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Headerless Blinky Example on STM32Nucleo
• In C, this is the code to perform a blinky routine. Program Size: 220 Bytes

5

/* Look Ma!, no headers */ 

#define GPIOARCCR (*(volatile int *)(0x40023800 + 0x30)) 

#define GPIOAMODER (*(volatile int *)0x40020000) 

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14)) 

 
int main(void) { 

    /* Enable GPIOA Clock */ 

    GPIOARCCR |= 1; /* Ref RCC_AHB2ENR register */ 

    /* Set Port A Pin 5 as Output */  

    GPIOAMODER |= (1 << 10); /* Ref GPIOx_MODER register */ 

    while (1) { 

        /* Set LED Pin High */ 

        GPIOAODR |= (1 << 5); /* Ref GPIOx_ODR register*/ 

        /* Dumb Delay: wait x number of clock cycles */ 

        for (int k = 0; k<1000000; k++){__asm("nop");} 

        /* Set LED Pin Low */ 

        GPIOAODR &= ~(1 << 5); /* Ref GPIOx_ODR register*/ 

        /* Dumb Delay */ 

        for (int k = 0; k<1000000; k++){__asm("nop");} 

    } 
} 
 

This is the lowest level 
programming in C, any lower and 
you will have to program in 
assembly

Not portable to other MCUs in 
the same family 
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Register Address Referencing
• What is this gibberish: 
• This is creating a macro: GPIOAODR to access the GPIO Port A Output Data R
• The address itself is 0x40020014, but in C/C++ we need to tell the compiler 

that we want to represent the value in that address, so
1. Cast the hex number to 32bit pointer, now we have a pointer (address only)

2. Make it volatile, to tell compiler that its value might change by hardware 

3. Then dereference it using *, to act on the value INSIDE the address

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14)) 

#define GPIOAODR (int *)(0x40020000 + 0x14) 

#define GPIOAODR (volatile int *)(0x40020000 + 0x14) 

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14)) 
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Blinky Example on STM32Nucleo with stm32f401xe definitions
• The same code as before, but we use the provided macro definitions for the 

addresses, address shifts and bitmasks (exactly similar binary as before)

5

#include "stm32f401xe.h" 

 
int main(void) { 

    /* Enable GPIOA Clock */ 

    RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; /* Ref RCC_AHB2ENR register */ 

    /* Set Port A Pin 5 as Output */ 

    GPIOA->MODER |= (1 << GPIO_MODER_MODE0_Pos); /* Ref GPIOx_MODER register */ 

    while (1) { 

        /* Set LED Pin High */ 

        GPIOA->ODR |= (1 << GPIO_ODR_OD5_Pos); /* Ref GPIOx_ODR register*/ 

        /* Dumb Delay: wait x number of clock cycles */ 

        for (int k = 0; k<1000000; k++){__asm("nop");} 

        /* Set LED Pin Low */ 

        GPIOA->ODR &= ~(1 << GPIO_ODR_OD5_Pos); /* Ref GPIOx_ODR register*/ 

        /* Dumb Delay */ 

        for (int k = 0; k<1000000; k++){__asm("nop");} 

    } 
} 
 

Still Low-Level C but with 
the help of macro 
definitions (at no extra 
memory overhead charge)
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Blinky Example on STM32Nucleo with STM32Cube HAL
• ST provides an abstraction for their MCUs called STM32Cube, this is a blinky

routine using their abstraction. Program Size: 404 Bytes

5

#include "stm32f4xx_hal.h" /* We don't include the specific stm32f401xe header, but just the HAL */ 

#include "stm32f4xx.h" 

#define LED_GPIO_CLK_ENABLE()                  __HAL_RCC_GPIOA_CLK_ENABLE() 

 
int main(void){ 

  HAL_Init(); /* Initialize the HAL Drivers */ 

   
  LED_GPIO_CLK_ENABLE(); /* Enable GPIO A Clock */ 

  GPIO_InitTypeDef GPIO_InitStruct;  

  GPIO_InitStruct.Pin = GPIO_PIN_5; 
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; 
  GPIO_InitStruct.Pull = GPIO_PULLUP; 
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; 
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* The pin configuration is done through a function */ 

 
  while (1) 

  { 
    HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); /* HAL provides a toggle pin function */ 

    HAL_Delay(1000); /* As well as a delay function (milliseconds) */ 

  } 
} 
 

Higher Lower Level C Code, this is the 
recommended level for 
commercial/professional programming of MCU

Portable across other STM32 MCUs
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Blinky Example on STM32Nucleo with Arduino
• And this is the blinky code using the Arduino framework
• Program Size: 12404 Bytes. Abstraction comes at a cost!

5

#include <Arduino.h> 

 
void setup() { pinMode(LED_BUILTIN, OUTPUT); } 

 
void loop() { 

    digitalWrite(LED_BUILTIN, HIGH); 
    delay(50); 

    digitalWrite(LED_BUILTIN, LOW); 
    delay(200); 

} 
 

A good level of abstraction. Good for education / 
hobbyist / prototyping / quick lab instruments. 

Portable across all MCUs that have  an Arduino adoption
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Some available frameworks
• CMSIS: Cortex Microcontroller Software Interface Standard

• Developed by ARM
• Universal across other ARM Cortex MCU, not just ST

• SPL: Standard Peripheral Library
• Developed by ST for ST based ARM MCUs

• HAL ST: Hardware Abstraction Layer ST
• Developed by ST for ST based ARM MCUs, with focus on 

abstraction
• Arduino

• Developed for hobbyists and prototypists
• Become so popular, that manufacturers provide support for it 
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Standard Peripheral Library or STM32Cube
• Modern microcontrollers pack a lot of features and peripherals. Configuring 

peripherals through direct register access becomes cumbersome for a 
programmer. 

• Using manufacturers provided standard libraries “framework” is becoming 
standard practice.

• Libraries abstract away differences between microcontrollers so code can be 
more portable.
• HAL: Hardware Abstraction Layer

• Libraries are practically more proof tested with fewer bugs
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How to know what to do?
• Configuring and programming an MCU is not a straight-forward or linear 

process. 
• There are multiple references and tools that must be used concurrently
• With STM32Nucleo, we use:

• Datasheet
• Reference Manual 
• User Manual for STM32 Nucleo
• Framework User Manual (e.g. HAL and LL User Manual)

• Example Code for framework selected
• Consult developer community

Other manufacturers may combine them into one document



ME 319 Part I: The Brains – L5 Page: 26

Datasheet
• Gives “specs”
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Reference Manual
• A guide on how to configure and use the MCU

• Registers Information
• Possible Configurations

• Used by developers
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HAL and LL User Manual
• The HAL and LL User Manual is almost self contained

• It re-describes the available configurations on the mcu
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HAL and LL User Manual: Example on Using the GPIO Driver


