
ME 319 Part I: The Brains – L5 Page: 1

Kuwait University
College of Engineering and Petroleum

Spring 2021

ME319 MECHATRONICS
PART I: THE BRAINS – MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC
LECTURE 5: GENERAL PURPOSE INPUT OUTPUT PERIPHERAL

Ali AlSaibie

ME 319 Part I: The Brains – L5 Page: 2

Lecture Plan
• Objectives:

• Review the basic components of the GPIO Peripheral
• Become familiar with the microcontroller reference manual
• Walk through a blinky routine at different abstraction levels

ME 319 Part I: The Brains – L5 Page: 3

GPIO: General Purpose Input Output
• Basic way to interface MCU with outside world
• Direction: Input or Output
• Data (Value): Logic High or Low – Written (Output). Read (Input)
• GPIO Pins belong to Ports, On STM32F401x there are up to 16 pins per port
• STM32F401x

• Most Pins are GPIO by default (on reset)
• Some Pins are set for special functions on reset (JTAG)

• 5V-Tolerant
• 15 GPIO Blocks. Ports A - Port Q [No Port I or Port O]
• Internal weak pull-up or pull-down resisters

ME 319 Part I: The Brains – L5 Page: 4

GPIO: General Purpose Input Output - Example
• PA1 and PA0 are both configured as GPIO Pins

• PA1 reads: Port A Pin 1
• PA1 Set as output and PA0 as Input
• When PA1 is High (Logic 1): LED turns on
• When Switch is pressed: PA0 reads logic 1 (High)
• The GPIO Peripheral usually has:

• Multiple ports, which have:
• Multiple pins

ME 319 Part I: The Brains – L5 Page: 5

Alternate Functions
• GPIO Pins also refer to programmable pins in general (non-fixed func pins: GND, 5V, etc)
• GPIO pins can be configured for alternative functions such as:

– UART,I2C,ADC,DAC etc.
– Table 9 in the datasheet lists the alternate functions each pin can have
– A pin can serve only one function at a time.

• E.g. Pins PA0 and PA1 can have one of 4 alternative digital functions
– Timer2 Ch 1, Timer 5 Ch 2, USART Clear To Send, or Event Out (Interrupt Pin)

ME 319 Part I: The Brains – L5 Page: 6

Current Capabilities
• Pins can drive low current external devices, such as LEDs or other integrated

circuits

ME 319 Part I: The Brains – L5 Page: 7

Current Capabilities
• To drive high current devices such as a light bulb, an external driver is required.

Pin acts as signal trigger
• E.g. Use a transistor to light LED

• Drive the transistor via pin

ME 319 Part I: The Brains – L5 Page: 8

Pull Up and Pull Down Resistors
• To ensure deterministic binary logic, a pull up or

pull down resistor is used.

• Positive Logic: Pin normally connected to ground
through pull-down resistor, so pin reads low.
When source is connected, pin reads high.

• Negative Logic: Pin normally connected to
source through pull-up resistor, connecting to
ground sets pin low.

• Weak:- high resistance (weak current drain)

• The resistor guarantees the logic is inverted
when the source is not connected, and that the
value is not “floating”

Po

STM32

PA5

3.3V

in

STM32

PA5

3.3V

STM32

PA5

3.3V

in

in

Positive Logic, external Positive Logic, internal

 STM32

PA5

3.3V

in

Negative Logic, external Negative Logic, internal

ME 319 Part I: The Brains – L5 Page: 9

MCU Registers: An Overview
• Program code interacts with hardware through changing bits inside registers
• A register is a memory location inside the microcontroller
• Interface with a microcontroller is done through registers, whether reading or

writing to them. Registers can be Read-Only, or Read-Write
• The STM32F401RE is a 32bit microcontroller, and so each register is

technically composed of 32 bit-fields.
• A typical register address looks like

0x4002 0000
• The above happens to be the base address for GPIO Port A
• GPIO registers are listed by their offset. The same offset is applied over

whichever GPIO Port base address

ME 319 Part I: The Brains – L5 Page: 10

Example Register
• Here is a the GPIO Mode register (REF02_STM32 Reference Manual)
• Common to all GPIO Ports (every GPIO Port has a mode register)

Example: we write 01 in
bits [11:10] if we want to
set Pin 5 as an output pin

This is basically what the
Arduino function:

pinMode(PA5, OUTPUT);

does

ME 319 Part I: The Brains – L5 Page: 11

Register: Addressing
• On STM32 MCUs, a base address is given and the list of offsets
• Given GPIO Port A base address: 0x4002 0000
• And the GPIOs mode registers (GPIOx_MODER) address offset is 0x00, and the

output data register (GPIOx_ODR) address offset is 0x14
Then:
• GPIO mode register address for Port A (GPIOA_MODER) is

0x4002 0000 (0x4002 0000 + 0x00)
• GPIO output type register address for Port A (GPIOA_ODR) is

0x4002 0014 (0x4002 0000 + 0x14)
• If the base address of GPIO Port B is: 0x40020400,

• What is the GPIOB_ODR address?

ME 319 Part I: The Brains – L5 Page: 12

Blinky Example on STM32Nucleo
• To execute a basic blinky routine, we need to do the following on

STM32F401RE. The LED is connected to PA5: Port A Pin 5
1. Enable the GPIO Port A clock (See RCC Register)
2. Set the GPIO Port A Pin 5 is output (See GPIOA_MODER Register)
3. Set the GPIO Port A Pin 5 output to 1 (High) to turn LED On, or set it to 0

(Low) to switch it off
4. Have some delay routine in between the Ons and Offs

Let’s see the relevant registers and see how we can execute a blinky code.
The concepts learned will extend to advanced peripherals.

ME 319 Part I: The Brains – L5 Page: 13

RCC Register
• RCC: Reset and Clock Control. Base address: 0x4002 3800
• By default, peripherals are switched off (clock source disabled)
• We can turn each peripheral clock on/off separately.
• Specifically, the RCC_AHB1 peripheral clock enable register is where GPIO Port

A is enabled.

ME 319 Part I: The Brains – L5 Page: 14

GPIO Mode Register
• Through the GPIO Mode register we set individual pins either as: Input, Output,

Analog or Alternate Function (AF, e.g. UART, USB, PWM, TIM, etc)

ME 319 Part I: The Brains – L5 Page: 15

GPIO ODR Register
• ODR: Output Data Register
• If the pin is set as output, write to this register to set respective bit high/low

ME 319 Part I: The Brains – L5 Page: 16

GPIO IDR
• There are other registers for manipulating GPIO, which you can review on the

Reference Manual (REF02)
• The GPIO_IDR: Input Data Register for example, is where you would read the

state of an input pin.

ME 319 Part I: The Brains – L5 Page: 17

GPIO Registers
• GPIOx_MODER

• Mode Register (Input, Output, AF,
Analog)

• GPIOx_OTYPER
• Output Type (Push-pull or Open-

drain)
• GPIOx_OSPEEDR

• Output Speed (Low, Medium, High,
Very High Speed)

• GPIOx_PUPDR
• Pull-up/Pull-down Register

• GPIOx_IDR

• Input Data Register
• GPIOx_ODR

• Output Data Register
• GPIOx_BSRR

• Bit Set / Reset
• GPIOx_LCKR

• Port Configuration Lock
• GPIOx_AFRL

• Alternate Function Low Register
• GPIOx_AFRH

• Alternate Function High Register

ME 319 Part I: The Brains – L5 Page: 18

Headerless Blinky Example on STM32Nucleo
• In C, this is the code to perform a blinky routine. Program Size: 220 Bytes

5

/* Look Ma!, no headers */

#define GPIOARCCR (*(volatile int *)(0x40023800 + 0x30))

#define GPIOAMODER (*(volatile int *)0x40020000)

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14))

int main(void) {

 /* Enable GPIOA Clock */

 GPIOARCCR |= 1; /* Ref RCC_AHB2ENR register */

 /* Set Port A Pin 5 as Output */

 GPIOAMODER |= (1 << 10); /* Ref GPIOx_MODER register */

 while (1) {

 /* Set LED Pin High */

 GPIOAODR |= (1 << 5); /* Ref GPIOx_ODR register*/

 /* Dumb Delay: wait x number of clock cycles */

 for (int k = 0; k<1000000; k++){__asm("nop");}

 /* Set LED Pin Low */

 GPIOAODR &= ~(1 << 5); /* Ref GPIOx_ODR register*/

 /* Dumb Delay */

 for (int k = 0; k<1000000; k++){__asm("nop");}

 }
}

This is the lowest level
programming in C, any lower and
you will have to program in
assembly

Not portable to other MCUs in
the same family

ME 319 Part I: The Brains – L5 Page: 19

Register Address Referencing
• What is this gibberish:
• This is creating a macro: GPIOAODR to access the GPIO Port A Output Data R
• The address itself is 0x40020014, but in C/C++ we need to tell the compiler

that we want to represent the value in that address, so
1. Cast the hex number to 32bit pointer, now we have a pointer (address only)

2. Make it volatile, to tell compiler that its value might change by hardware

3. Then dereference it using *, to act on the value INSIDE the address

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14))

#define GPIOAODR (int *)(0x40020000 + 0x14)

#define GPIOAODR (volatile int *)(0x40020000 + 0x14)

#define GPIOAODR (*(volatile int *)(0x40020000 + 0x14))

ME 319 Part I: The Brains – L5 Page: 20

Blinky Example on STM32Nucleo with stm32f401xe definitions
• The same code as before, but we use the provided macro definitions for the

addresses, address shifts and bitmasks (exactly similar binary as before)

5

#include "stm32f401xe.h"

int main(void) {

 /* Enable GPIOA Clock */

 RCC->AHB1ENR |= RCC_AHB1ENR_GPIOAEN; /* Ref RCC_AHB2ENR register */

 /* Set Port A Pin 5 as Output */

 GPIOA->MODER |= (1 << GPIO_MODER_MODE0_Pos); /* Ref GPIOx_MODER register */

 while (1) {

 /* Set LED Pin High */

 GPIOA->ODR |= (1 << GPIO_ODR_OD5_Pos); /* Ref GPIOx_ODR register*/

 /* Dumb Delay: wait x number of clock cycles */

 for (int k = 0; k<1000000; k++){__asm("nop");}

 /* Set LED Pin Low */

 GPIOA->ODR &= ~(1 << GPIO_ODR_OD5_Pos); /* Ref GPIOx_ODR register*/

 /* Dumb Delay */

 for (int k = 0; k<1000000; k++){__asm("nop");}

 }
}

Still Low-Level C but with
the help of macro
definitions (at no extra
memory overhead charge)

ME 319 Part I: The Brains – L5 Page: 21

Blinky Example on STM32Nucleo with STM32Cube HAL
• ST provides an abstraction for their MCUs called STM32Cube, this is a blinky

routine using their abstraction. Program Size: 404 Bytes

5

#include "stm32f4xx_hal.h" /* We don't include the specific stm32f401xe header, but just the HAL */

#include "stm32f4xx.h"

#define LED_GPIO_CLK_ENABLE() __HAL_RCC_GPIOA_CLK_ENABLE()

int main(void){

 HAL_Init(); /* Initialize the HAL Drivers */

 LED_GPIO_CLK_ENABLE(); /* Enable GPIO A Clock */

 GPIO_InitTypeDef GPIO_InitStruct;

 GPIO_InitStruct.Pin = GPIO_PIN_5;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_PULLUP;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
 HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /* The pin configuration is done through a function */

 while (1)

 {
 HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5); /* HAL provides a toggle pin function */

 HAL_Delay(1000); /* As well as a delay function (milliseconds) */

 }
}

Higher Lower Level C Code, this is the
recommended level for
commercial/professional programming of MCU

Portable across other STM32 MCUs

ME 319 Part I: The Brains – L5 Page: 22

Blinky Example on STM32Nucleo with Arduino
• And this is the blinky code using the Arduino framework
• Program Size: 12404 Bytes. Abstraction comes at a cost!

5

#include <Arduino.h>

void setup() { pinMode(LED_BUILTIN, OUTPUT); }

void loop() {

 digitalWrite(LED_BUILTIN, HIGH);
 delay(50);

 digitalWrite(LED_BUILTIN, LOW);
 delay(200);

}

A good level of abstraction. Good for education /
hobbyist / prototyping / quick lab instruments.

Portable across all MCUs that have an Arduino adoption

ME 319 Part I: The Brains – L5 Page: 23

Some available frameworks
• CMSIS: Cortex Microcontroller Software Interface Standard

• Developed by ARM
• Universal across other ARM Cortex MCU, not just ST

• SPL: Standard Peripheral Library
• Developed by ST for ST based ARM MCUs

• HAL ST: Hardware Abstraction Layer ST
• Developed by ST for ST based ARM MCUs, with focus on

abstraction
• Arduino

• Developed for hobbyists and prototypists
• Become so popular, that manufacturers provide support for it

ME 319 Part I: The Brains – L5 Page: 24

Standard Peripheral Library or STM32Cube
• Modern microcontrollers pack a lot of features and peripherals. Configuring

peripherals through direct register access becomes cumbersome for a
programmer.

• Using manufacturers provided standard libraries “framework” is becoming
standard practice.

• Libraries abstract away differences between microcontrollers so code can be
more portable.
• HAL: Hardware Abstraction Layer

• Libraries are practically more proof tested with fewer bugs

ME 319 Part I: The Brains – L5 Page: 25

How to know what to do?
• Configuring and programming an MCU is not a straight-forward or linear

process.
• There are multiple references and tools that must be used concurrently
• With STM32Nucleo, we use:

• Datasheet
• Reference Manual
• User Manual for STM32 Nucleo
• Framework User Manual (e.g. HAL and LL User Manual)

• Example Code for framework selected
• Consult developer community

Other manufacturers may combine them into one document

ME 319 Part I: The Brains – L5 Page: 26

Datasheet
• Gives “specs”

ME 319 Part I: The Brains – L5 Page: 27

Reference Manual
• A guide on how to configure and use the MCU

• Registers Information
• Possible Configurations

• Used by developers

ME 319 Part I: The Brains – L5 Page: 28

HAL and LL User Manual
• The HAL and LL User Manual is almost self contained

• It re-describes the available configurations on the mcu

ME 319 Part I: The Brains – L5 Page: 29

HAL and LL User Manual: Example on Using the GPIO Driver

