
ME 319 Part I: The Brains – L6 Page: 1

Kuwait University
College of Engineering and Petroleum

Spring 2021

ME319 MECHATRONICS
PART I: THE BRAINS – MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC
LECTURE 6: TIMERS

Ali AlSaibie

ME 319 Part I: The Brains – L6 Page: 2

Lecture Plan
• Objectives:

• Understand the fundamentals of a timer operation
• Overview the application of Timers
• Introduce Pulse Width Modulation

• Note: the timer operations reviewed in this lecture are based on the
STM32F401x MCUs, but they largely apply to all MCU Timers. Names and
terms may differ.

ME 319 Part I: The Brains – L6 Page: 3

Timers – Mechanical Analogy
• This is a mechanical tick counter. Every time you click the middle button, it

increments the counter by one.
• Continues to count up until 9999 then resets, mechanically, to 0000
• Now, replace the mechanical counter by a memory register, and
• Replace the button-clicking-action by an electric pulse
• You now have a digital timer.
• The size of the counter register (# of bits) and pulse rate:

• Determine the speed of the count and the reset rate

ME 319 Part I: The Brains – L6 Page: 4

Timers

ME 319 Part I: The Brains – L6 Page: 5

Example 1If you have an 8bit counter; a counter that counts from 0 to 255 then resets
to 0. And you are counting up at a rate of 20Hz. How long does it take for you
to count from 0 to 255?

ME 319 Part I: The Brains – L6 Page: 6

Timers
• In the context of an MCU, a timer
• Counts up or down, either at a specific rate or in response to an event
• Timer count is stored in a memory register (8, 16, 32bit registers)
• A 16-bit timer will count up from 0x0000 to 0xFFFF, then rollover to 0x0000

• Or can count down from 0xFFFF to 0x0000 and rollover to 0xFFFF
• Can also be configured to rollover at a specific value (or start from one)

• Can configure it to count to 0xF0E5, for example, then rollover.
• When an MCU has multiple timer peripherals, usually:

• Every timer peripheral can be independently set (rate, range, mode,
direction)

ME 319 Part I: The Brains – L6 Page: 7

Timers
• A timer increments (decrements) in response to a pulse

• Rising Edge, Falling Edge, or Both
• The pulse can come from a clock source, which can be scaled (prescaler), or
• From an event signal (e.g. an external button press, encoder, modulated signal)

ME 319 Part I: The Brains – L6 Page: 8

Example 2We would like to have a timer rollover every 10ms. If the timer is running at
100MHz (count rate), what should be the starting count value (timer in
count-down mode)

ME 319 Part I: The Brains – L6 Page: 9

Timer (♪♪ What is it good for? ♪♪) Absolutely Everything
• Using timers, we can
• Keep track of elapsed time, or wait for a specific amount of time

• E.g. When you call delay(500); a timer peripheral is used
• Call a function at a specific and deterministic rate

• E.g. Essential in applied control systems
• Generate a signal with a specific frequency & on/off time ratio

• E.g. Generate a square wave, PWM or PPM signal
• Record the time when an external or internal event occurred

• E.g. Register the frequency of a square wave signal

Let’s look at how each one is achieved…..

ME 319 Part I: The Brains – L6 Page: 10

Timer
• An 8-bit count-down timer, can be configured to count from a maximum value

of 0xFF.
• Termed the autoload value, since the MCU will load it onto counter at rollover
• Rollover frequency:

𝑓𝑟𝑜𝑙𝑙𝑜𝑣𝑒𝑟 =
𝑓𝑐𝑜𝑢𝑛𝑡

𝐴𝑢𝑡𝑜𝐿𝑜𝑎𝑑 𝑉𝑎𝑙𝑢𝑒

• Rollover period:

𝑇𝑟𝑜𝑙𝑙𝑜𝑣𝑒𝑟 =
1

𝑓𝑟𝑜𝑙𝑙𝑜𝑣𝑒𝑟
= 𝑇𝑐𝑜𝑢𝑛𝑡 × 𝐴𝑢𝑡𝑜𝐿𝑜𝑎𝑑 𝑉𝑎𝑙𝑢𝑒

ME 319 Part I: The Brains – L6 Page: 11

Timer Modes
• There are several modes a timer can be configured for
1. Periodic Timer: Internal MCU use
2. Input Capture: Records when an external input event occurred
3. Output Compare: Generates an external output waveform
Additional modes can be found on MCUs, but they are usually an extension of
the above
In each of these modes, there is always a counter incrementing/decrementing at
a specific rate, but their purpose and use are different.
Timers, just like other peripherals, operate independently from the CPU.
There is no CPU overhead from using timers; except for when
accessing timer data

ME 319 Part I: The Brains – L6 Page: 12

Timer Modes – Periodic Timer
• When used as a general, or periodic, timer:
• General count up/down timer, counting at a set rate
• Can generate a timed interrupt INT (interrupt CPU at a specific rate), 1 usage:

• Configure a timer (rate, count range) to issue an INT at every rollover
• Then tie this INT to a specific function call.
• Now you have a periodic function call, use it to control a robot motor

• Can also be checked, polled, by the program. 1 usage:
• Configure a timer to run freely
• If you want to delay(500ms), wait for a number of counts then continue
• # counts to wait are based on timer rate and delay duration

requested

ME 319 Part I: The Brains – L6 Page: 13

Timer Modes – Input Capture
• In Input Capture mode, you have:
• A timer running with a certain configuration (rate, range, direction), plus
• Monitors for an external input event via a pin (Rising Edge, Falling or Both)
• When an event occurs, timer makes a copy of the count value in the timer

register and stores it in a second memory register
• Can also issue an INT to CPU: “Hey Boss, an event occurred, come down and

read the count value for when it occurred.”
• With this setup you can: measure frequency of an input signal

• Record count values for two events, subtract difference and convert to
time/frequency

ME 319 Part I: The Brains – L6 Page: 14

Timer Modes - Input Capture
• Note that the timer counter keeps running uninterrupted, when event occurs a

snapshot of the counter value is stored in a different register

ME 319 Part I: The Brains – L6 Page: 15

Timer Modes - Input Capture
• Time in Input Capture Mode is used with rotary encoders

Channel A

Channel B

t

Channel A leads: Clockwise, otherwise CCW

Timer

Channel B

16-bit down counter

Rising Edge Detect Timer Value

Channel A

16-bit down counter

Rising Edge Detect Timer Value

Timer A

Timer B

ME 319 Part I: The Brains – L6 Page: 16

Example 3Given the following Timer Configuration. If the detection mode is on Both Edges
(Rising and Falling). What is the counter value when the edge detection occurs.
Assume the counter restarts every time an edge is detected.

ME 319 Part I: The Brains – L6 Page: 17

Timer Modes – Output Compare
• In Output Compare, you have
• A timer running with a certain configuration (rate, range, direction), plus
• A fixed value to compare the count value of the timer with
• At the beginning of the count or at rollover, set a GPIO output pin
• If the counter reaches the compare value, clear the GPIO output pin.
• With this you can create a:

• A variable width pulse (PWM)
• Autoload Value determines signal freq, compare value determines duty

cycle
• A variable frequency signal (Square Wave).

• Autoload Value determines signal freq:
• compare value is 1

2
autoload value

ME 319 Part I: The Brains – L6 Page: 18

Timer Modes – Output Compare
• By selecting the range (autoload value) in the counter, the count rate and the

compare value an output signal can be designed and generated.

ME 319 Part I: The Brains – L6 Page: 19

Example 4 Given the following timer configuration. What should be the autoload value
for the 16-bit down counter, and the compare value. In order to generate a
100kHz square wave signal.

ME 319 Part I: The Brains – L6 Page: 20

Pulse Width Modulation
• When we have an analog input to the microcontroller, we can use the ADC to

convert to digital, how about going the other way?
• Say we want to vary the output voltage to control the brightness of an LED, or

the speed of a motor?
• Microcontrollers work in 1’s and 0’s, how to achieve a value in between?
• Options:

• DAC: Digital to Analog Conversion (Computationally costly)
• PWM: Pulse Width Modulation (Simple and easy)

• Many systems (electromechanical specifically) have a low pass filter
characteristic to high frequency signals.

• They can accept a high frequency binary signal and average it

ME 319 Part I: The Brains – L6 Page: 21

Pulse Width Modulation
• A variable signal can be generated with one output

• In fact, a PWM with an external Low Pass Filter circuit can perform DAC

ME 319 Part I: The Brains – L6 Page: 22

Pulse Width Modulation
• Components of a PWM Signal
• Frequency is fixed for the application
• Pulse width is changed, hence the name Pulse Width Modulation
• Three quantities define PWM signal:

• Pulse Width
• Period (Frequency)
• Voltage

ME 319 Part I: The Brains – L6 Page: 23

PWM – Duty Cycle
• Duty Cycle is the percentage of time the signal is HIGH

ME 319 Part I: The Brains – L6 Page: 24

PWM - Frequency
• PWM signal has a fixed frequency that is independent of the duty cycle

• Configured to be a specific value based on the application

• PWM signal can be generated using a digital output pin by rapidly setting
pin high/low (PWM with 50% Duty Cycle => square wave signal)

ME 319 Part I: The Brains – L6 Page: 25

PWM Frequency
• Frequency must be high enough for AC component to be suppressed by the

driven system
• For driving coils/windings, humming can occur for frequencies in the audible

range. Aim for >25kHz
• Higher frequencies-> higher switching rates -> higher energy loss
• Avoid resonant frequencies of drive system

ME 319 Part I: The Brains – L6 Page: 26

PWM Signal as Variable Voltage Signal
• What is the voltage of the PWM signal averaged over 1 cycle?

𝑉𝐴𝑉𝐺 =
5𝑉 20𝑚𝑠 + 0𝑉 80𝑚𝑠

100𝑚𝑠
= 1𝑉

𝑉𝐴𝑉𝐺 = 𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 × 𝑉𝑑𝑑

ME 319 Part I: The Brains – L6 Page: 27

PWM to Drive a DC Motor
• Simple motor drive, one direction
• MOSFETs are able to switch much faster than PWM
• Signal PWM line replicated on Power line

𝑉𝐴𝑉𝐺 = 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒 × 𝑉+

ME 319 Part I: The Brains – L6 Page: 28

PWM on STM32F401x
• PWM using Timer Module

• Simple Implementation
• Using Output Compare Principle
• 32-bit or 16-bit timer

• PWM Using PWM Module
• Provides PWM on all timers/channels
• On Advanced Control Timer 1

• Combined in single action or complementary pairs
• Provide Dead-band delays (prevents shoot through; shorting)
• Timer synchronization of PWM blocks
• 16-bit timer

ME 319 Part I: The Brains – L6 Page: 29

Timers on STM32F401RE
• The STM32F401RE has up to 11 timers

ME 319 Part I: The Brains – L6 Page: 30

Timer Channel
• Timers interface with pins through channels
• On STM32F4x, a timer has up to four channels
• There is a specific pin associated with each channel
• A pin might be associated to more than one timer
• For Example: Look at PA2 and PA3

