ugall azol

KUWAIT UNIVERSITY

Kuwait University
College of Engineering and Petroleum %

ME319 MECHATRONICS
PART I: THE BRAINS — MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC

LECTURE 7: INTERRUPTS

Spring 2021
Ali AlSaibie

Lecture Plan

* Objectives:
* Introduce the concepts of timers
 Overview some of different ways interrupts are used on a microcontroller

Part |I: The Brains — L7

Interrupts

* Whole purpose of MCU devices is to respond to external stimuli by controlling
mechanical device

* Question arises: How do we program device to monitor and/or respond to
external stimulus?

* Examples:

Part |I: The Brains — L7

Polling vs Interrupts

* One mechanism to do this is called polling or busy-wait synchronization

* |dea: Continuously check a variable in a loop to see if it has changed

* Example:

Part |I: The Brains — L7

Polling

» What are the drawbacks of polling?

* Software is tied up checking a certain address and cannot do other tasks
(inefficient computation)

* If we are waiting on multiple possible events, cumbersome to establish
Driority

* If software is waiting for long periods, extremely inefficient use of power
(inefficient power consumption)

Part |I: The Brains — L7

Polling

Port A

r

int main(int argc, char* argv[]) {
while (1) {

C if (signalReceived()) {

performAction();
}

return 1;

¥

signalReceived()

continuously checks (polls) the state of PA4

OO00®O000

Part |I: The Brains — L7

dgall denlh
KUWAIT UNIVERSITY

Interrupts

* A way for software/processor/peripheral to flag/notify each other
* Critical and powerful feature of processors

 Commonly used to “interrupt” the processor

* Peripherals can use interrupts to indicate status

* An interrupt is an asynchronous switch in processor execution

Part |I: The Brains — L7

Interrupt Execution

Port A

s)
void interrupt PA4 callback(){
performAction();
}
int main(int argc, char* argv[]) {
while (1) { EXINT =
/* Do something else */
}
return 1;
}
\)

The GPIO Interrupt Controller
Monitors the Pin for Events

(eJe]e]elelelele)
"
é

Part |I: The Brains — L7

Interrupt Execution

Port A

A callback function is executed
in response to the interrupt

J

An Interrupt Flag is issued
when an external event occurs

flag
‘ { O
void interrupt PA4 callback(){
performAction(); O
}
int main(int argc, char* argv[]) { O
while (1) { EXINT ms
/* Do something else */ ______Csensor>
}
return 1; O
}
‘ ’ O

[

Part |I: The Brains — L7

GPIO Switch Example Using Interrupts

/* Example: Interrupt Based LED Switch (Soft-Latching)

* Using the arduino API, it's very convenient to setup an external event interrupt
*/

#include <Arduino.h>

/* Callback function for whenever the User Button is pressed */

void switch callback(void) { digitalToggle(LED BUILTIN); }

void setup() {
pinMode (USER_BTN, INPUT);
pinMode (LED_BUILTIN, OUTPUT);
/* attach the Low/Falling event (Negative logic on Nucleo Button)
* to a callback function.
**/
attachInterrupt (USER_BTN, switch callback, LOW);

¥
void loop() {/* Nothing else to be done */}

cugall denla
KUWAIT UNIVERSITY

Part |I: The Brains — L7

Interrupts on Peripherals

* Most hardware features on the MCU can generate interrupts and can
have an associated ISR

* Analog-to-digital converter
* Flash memory controller

* Timers

* UARTS

* GPIO ports

 |2C

* Serial Peripheral Interface

» Basically, any peripheral that would benefit from flagging the CPU on
specific events, likely has an interrupt issuing capability.

Part |I: The Brains — L7

Interrupts

By default, if you do not explicitly enable an interrupt, code executes serially,
and no interrupts will occur

* Setting up an interrupt and defining appropriate ISR to run when interrupt
occurs is your responsibility

 Deciding when to use interrupts, and when to use polling, is your choice as
software developer

Part |I: The Brains — L7

Interrupts Priority

 Potentially, your code may have several interrupts enabled at one time

* i.e., you have one interrupt for ADC and one interrupt for edge-triggered
GPIO

» \What happens if both events happen at same time? While ISR runs?
* Or, if GPIO event happens when ADC ISR is executing?

* This is why you must define interrupt priority when enabling an interrupt

Part |I: The Brains — L7

Interrupts Priority

* Priority rules:

* /f an ISR of higher priority is running and lower priority interrupt is triggered,
ISR of lower priority will wait for the higher priority ISR to finish, then start
afterwards.

 /[f an ISR of lower priority is running and higher priority interrupt is triggered,
ISR of higher priority takes over, runs to completion, and returns execution
to lower priority ISR

* ISR is akin to an interrupt callback function. The reason it is called an “interrupt
service routine” is that once it is executed the interrupt flag is cleared: /t has
been serviced, and then it lives happily ever after, until it is flagged again that
/S.

Part |I: The Brains — L7

Interrupts on STM32F401x

Nested vectored interrupt controller (NVIC)

NVIC features

The nested vector interrupt controller NVIC includes the following features:

e 52 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M4 with
FPU)

. 16 programmable priority levels (4 bits of interrupt priority are used)
e |ow-latency exception and interrupt handling

. power management control

e implementation of system control registers

Part |I: The Brains — L7

* Sometimes you really do not want main code to pause execution
* For instance, if you are doing some sort of critical task
* Examples:

* Then disable all interrupts in this code section, and enable again when finished
with critical section

Part |I: The Brains — L7

Interrupts

* Using interrupts to trigger ADC Conversion

S Trigger Start of Conversion
Periodic Timer

wpt periodically

Trigger Conversion
[ADC]

Complete Interrupt

Main Process Paused

—

[ISR: Grab Sampled Value]

-

Then return to main

process Minimal processor time used %
ﬁﬂgg

cugall denla
KUWAIT UNIVERSITY

Part |I: The Brains — L7

Interrupts: Processor Interrupt-Based Threading

* Single core CPUs can only do one instruction at a time. One way to parallelize
the program is through the use of scheduled (periodic) and event-based
interrupts, with different priority levels.

 Higher priority ISRs can pause lower priority ISRs.

 Except for Non-Maskable interrupts (usually reserved for hardware errors)

... — e — Encoder ISR (Priority 1) - Event Based
e L_ ADC Sampling ISR (priority 2) - Periodic
............ Motor Control ISR (Priority 1) - Periodic
____________ |———' Main Loop (Priority 0) 4

>

Part |I: The Brains — L7

Interrupts from TIM Peripheral

» The TIM peripheral covered previously can generate several types of interrupts,
including:
 Overflow Interrupt: Every time the counter completes one lap (period
completed).

* Input Capture Interrupt: Every time an edge is detected from an input.

* Qutput Compare Interrupt: Every time the compare value is reached.

Part |I: The Brains — L7

