
ME 319 Part I: The Brains – L7 Page: 1

Kuwait University
College of Engineering and Petroleum

Spring 2021

ME319 MECHATRONICS
PART I: THE BRAINS – MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC
LECTURE 7: INTERRUPTS

Ali AlSaibie

ME 319 Part I: The Brains – L7 Page: 2

Lecture Plan
• Objectives:

• Introduce the concepts of timers
• Overview some of different ways interrupts are used on a microcontroller

ME 319 Part I: The Brains – L7 Page: 3

Interrupts
• Whole purpose of MCU devices is to respond to external stimuli by controlling

mechanical device
• Question arises: How do we program device to monitor and/or respond to

external stimulus?
• Examples:

• Run a motor every time someone presses a button
• Each time a sensor signal goes high, sound an alarm
• Turn a stepper motor until a limit switch activates
• Each time a GPS signal is received, log data to flash memory

ME 319 Part I: The Brains – L7 Page: 4

Polling vs Interrupts
• One mechanism to do this is called polling or busy-wait synchronization
• Idea: Continuously check a variable in a loop to see if it has changed

• Combine with if statement to take action if it has
• Example:

• Loop and continuously check if user presses button
• If so, do something
• Then wait until user releases button

ME 319 Part I: The Brains – L7 Page: 5

Polling
• What are the drawbacks of polling?

• Software is tied up checking a certain address and cannot do other tasks
(inefficient computation)

• If we are waiting on multiple possible events, cumbersome to establish
priority

• If software is waiting for long periods, extremely inefficient use of power
(inefficient power consumption)

• Ideally, would like to be able to put MCU in low power mode while
waiting

ME 319 Part I: The Brains – L7 Page: 6

Polling

ME 319 Part I: The Brains – L7 Page: 7

Interrupts
• A way for software/processor/peripheral to flag/notify each other

• Critical and powerful feature of processors
• Allow the implementation of real-time computing

• Commonly used to “interrupt” the processor
• The processor would then have to service the interrupt

• Peripherals can use interrupts to indicate status
• Can be polled by software

• Or, configured to interrupt the processor.

• An interrupt is an asynchronous switch in processor execution
• Asynchronous means that it occurs on demand, not with some specific

timing (like polling)

ME 319 Part I: The Brains – L7 Page: 8

Interrupt Execution

ME 319 Part I: The Brains – L7 Page: 9

Interrupt Execution

ME 319 Part I: The Brains – L7 Page: 10

GPIO Switch Example Using Interrupts

5

/* Example: Interrupt Based LED Switch (Soft-Latching)

* Using the arduino API, it's very convenient to setup an external event interrupt

*/

#include <Arduino.h>

/* Callback function for whenever the User Button is pressed */

void switch_callback(void) { digitalToggle(LED_BUILTIN); }

void setup() {

 pinMode(USER_BTN, INPUT);

 pinMode(LED_BUILTIN, OUTPUT);

 /* attach the Low/Falling event (Negative logic on Nucleo Button)

 * to a callback function.

 * */

 attachInterrupt(USER_BTN, switch_callback, LOW);

}
void loop() {/* Nothing else to be done */}

ME 319 Part I: The Brains – L7 Page: 11

Interrupts on Peripherals
• Most hardware features on the MCU can generate interrupts and can

have an associated ISR
• Analog-to-digital converter
• Flash memory controller
• Timers
• UARTs
• GPIO ports
• I2C
• Serial Peripheral Interface

• Basically, any peripheral that would benefit from flagging the CPU on
specific events, likely has an interrupt issuing capability.

ME 319 Part I: The Brains – L7 Page: 12

Interrupts
• By default, if you do not explicitly enable an interrupt, code executes serially,

and no interrupts will occur
• Except for system level interrupts (faults, power loss, stack overflow, etc)

• Setting up an interrupt and defining appropriate ISR to run when interrupt
occurs is your responsibility

• Deciding when to use interrupts, and when to use polling, is your choice as
software developer

• Use polling when I/O structure is simple and fixed
• Use interrupts when I/O timing is variable and/or structure is complex

ME 319 Part I: The Brains – L7 Page: 13

Interrupts Priority
• Potentially, your code may have several interrupts enabled at one time

• i.e., you have one interrupt for ADC and one interrupt for edge-triggered
GPIO

• What happens if both events happen at same time? While ISR runs?
• Or, if GPIO event happens when ADC ISR is executing?

• This is why you must define interrupt priority when enabling an interrupt

ME 319 Part I: The Brains – L7 Page: 14

Interrupts Priority
• Priority rules:

• If an ISR of higher priority is running and lower priority interrupt is triggered,
ISR of lower priority will wait for the higher priority ISR to finish, then start
afterwards.

• If an ISR of lower priority is running and higher priority interrupt is triggered,
ISR of higher priority takes over, runs to completion, and returns execution
to lower priority ISR

• ISR is akin to an interrupt callback function. The reason it is called an “interrupt
service routine” is that once it is executed the interrupt flag is cleared: it has
been serviced, and then it lives happily ever after, until it is flagged again that
is.

ME 319 Part I: The Brains – L7 Page: 15

Interrupts on STM32F401x

ME 319 Part I: The Brains – L7 Page: 16

• Sometimes you really do not want main code to pause execution
• For instance, if you are doing some sort of critical task
• Examples:

• Sending a control input to a mechanism
• Sending a serial packet via UART
• Initializing port configurations

• Then disable all interrupts in this code section, and enable again when finished
with critical section

ME 319 Part I: The Brains – L7 Page: 17

Interrupts
• Using interrupts to trigger ADC Conversion

Main

Trigger Conversion
Complete Interrupt

Main Process Paused

ISR: Grab Sampled Value

Then return to main
process

Periodic Timer

ADC

Trigger Start of Conversion
Interrupt periodically

Minimal processor time used

ME 319 Part I: The Brains – L7 Page: 18

Interrupts: Processor Interrupt-Based Threading
• Single core CPUs can only do one instruction at a time. One way to parallelize

the program is through the use of scheduled (periodic) and event-based
interrupts, with different priority levels.

• Higher priority ISRs can pause lower priority ISRs.
• Except for Non-Maskable interrupts (usually reserved for hardware errors)

ME 319 Part I: The Brains – L7 Page: 19

Interrupts from TIM Peripheral
• The TIM peripheral covered previously can generate several types of interrupts,

including:
• Overflow Interrupt: Every time the counter completes one lap (period

completed).
• This is the interrupt used to issue a periodic callback function

• Input Capture Interrupt: Every time an edge is detected from an input.
• This can be used to measure input signal frequency.

• Output Compare Interrupt: Every time the compare value is reached.

