
ME 319 Part I: The Brains – L8 Page: 1

Kuwait University
College of Engineering and Petroleum

Spring 2021

ME319 MECHATRONICS
PART I: THE BRAINS – MICROCONTROLLERS, SOFTWARE AND DIGITAL LOGIC
LECTURE 8: COMMUNICATION

Ali AlSaibie

ME 319 Part I: The Brains – L8 Page: 2

Objectives
• Understand the basic form of inter-device communication
• Understand how asynchronous serial communication works

ME 319 Part I: The Brains – L8 Page: 3

Device to Device Communication
• Some devices and sensors convey data beyond simple analog data or a few

digital I/Os
• e.g. GPS, Camera, Motor Controller, MCU to MCU

GPS

STM32 Nucelo

Arduino Uno

Serial Camera

ME 319 Part I: The Brains – L8 Page: 4

Serial vs Parallel Communication
• Parallel: A group of bits are transferred

concurrently
• Bus communication on chip
• Older printers, laptop docking stations
• Usually 8 bits or more of data (1 word)
• Pros: faster transfer of data (for similar

frequency)
• Cons: limited distance, high SNR, cross-talk,

limited frequency
Transmitting Device

Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

Receiving Device

Data 0

Data 1

Data 2

Data 3

Data 4

Data 5

Data 6

Data 7

LSB

MSB

TTL

PARALLEL COMMUNICATION

ME 319 Part I: The Brains – L8 Page: 5

Serial vs Parallel Communication
• Serial: Sequential Transfer of Bits

• Single Data in, Single Data out physical lines
• E.g. USB, Firewire, PCI Express, RS-232, Ethernet, I2C, SPI, UART and many

others
• Pros: Less SNR and cross talk, higher frequency capable, less cost, longer

range
• Cons: Slower for lower frequencies (data rates)

Transmitting Device

Data Out

Receiving Device

Data In

Start Stop

LSB MSB

SERIAL COMMUNICATION

ME 319 Part I: The Brains – L8 Page: 6

Synchronous vs Asynchronous
• Synchronous: Data transfer at a set frequency

• Communicating devices must “synchronize” transfer frequency (timing of
packets)

• Transfer occurs regardless if new data is present
• Asynchronous: Data transfer on request

• Devices only agree on data transfer rate (bits/s)
• A start and stop bit must be used

ME 319 Part I: The Brains – L8 Page: 7

Synchronous vs Asynchronous
• Synchronous

+ Less overhead, pure data, faster
- Complex

• Asynchronous
+ Simple, Faster to setup
- Larger overhead (more bits than actual data)

Transmitting Device

Data Out

Transmitting Device

Data In

Packet

Synchronous

Packet

Ts Ts

Asynchronous

Start

LSB MSB

Stop

TBitrate

ME 319 Part I: The Brains – L8 Page: 8

Serial Communication on microcontrollers
• Modern microcontrollers support the following most common serial

communication protocols
• UART: Universal Asynchronous Receiver/Transmitter
• USART: Universal Synchronous-Asynchronous Receiver/Transmitter
• SPI: Serial Peripheral Interface
• I2C: Inter-Integrated Circuit (I-squared-C)
• CAN: Controller Area Network
• USB
• Ethernet

• They differ in complexity (in hardware and/or software), range, maximum data
rate, maximum channels,

ME 319 Part I: The Brains – L8 Page: 9

Communication Speed
• Quoted in number of bit multiples per second

• kbit/s or kb/s or kbps (kilobits per second) = 1000 bits per second
• Or binary multiples of bits per second

• Kibit/s (kibibit per second)= 1024 bits per second
• Or decimal multiples of bytes per second

• kB/s (kilobyte per second) = 8,000 bits/s = 1,000 bytes/s
• Or binary multiple of bytes per second

• KiB/s (kibibyte per second) = 1024 bytes/s

ME 319 Part I: The Brains – L8 Page: 10

Communication Speed
• In the context of Serial communication: Baud Rate is used
• Baud Rate: Number of symbols transmitted in one second

• Baud Rate generally means Symbols per second (not necessarily bits)
• In serial communication, Baud Rate = Bits/s (Symbol = Bit)

• Baud rates normally take the following values:
• 300, 600, 1200, 2400, …. 256000 bits per second

• Two devices connected through a UART channel must have the same configuration
• Same baudrate
• Same data bit size
• Same parity control

ME 319 Part I: The Brains – L8 Page: 11

UART
• A very common form of serial communication is UART
• UART: Universal Asynchronous Receiver/Transmitter
• Data Frame

• 8N1: Denotes 8 data bits, No Parity, 1 Stop Bit
• 10 Bits per frame (overhead: 2 bits, meaning 8 bits of pure data)

• 8N1 is the most common UART configuration

Bit # 1 2 3 4 5 6 7 8 9 10 11 12 13

Start
Bit

LSB 5-9 data bits MSB 0-1 Parity Bit 1-2 Stop Bits

Bit # 1 2 3 4 5 6 7 8 9 10

Start Bit LSB 8 data bits MSB Stop Bit

ME 319 Part I: The Brains – L8 Page: 12

UART – Parity Bit
• Parity bit is used to check for errors

• A form of CRC: Cyclic Redundancy Check
• If set, can be chosen to have odd or even parity
• Even parity: sum of 1s in data + parity bit must be even
• Odd Parity: sum of 1s in data + parity bit must be odd
• Example with Even Parity:

• Send 0x4F (01001111): Some of 1’s = 5, parity bit must be 1.
• Receiver must check if parity bit is 1, if not there is a transfer error

• It’s an optional feature

Start 1 0 1 0 1 1 1 0 Stop

One Frame

0V

3.3V

Data Bits

ME 319 Part I: The Brains – L8 Page: 13

UART – Flow Control
• Devices communication on UART can coordinate data transfer through flow

control
• Hardware Flow Control: Dedicated physical lines to assert availability to receive data.
• Receiver through RTS (Request-to-send) informs the other device that it’s CTS (Clear-to-

Send)
• If device 1 is busy RTS will remain HIGH
• If device 1 is free RTS will be set to LOW

UART Physical Layer

Device 1

TX

RX

CTS

RTS

Device 2

TX

RX

CTS

RTS

ME 319 Part I: The Brains – L8 Page: 14

UART – Flow Control
• Software Flow Control:

• Can be attained by using interrupts
• E.g. the receiver is programmed to read incoming data at a specific rate.
• Or, the transmitter is programmed to only send data at specific intervals.

• Or through special characters through data bits
• XOFF/XON (Pause / Resume Transmission)

• XOFF/XON has 0x13/0x11 representation
• Software level implementation (by programmer)

ME 319 Part I: The Brains – L8 Page: 15

UART – STM32F401xe
• STM32F401xe includes up to 3 hardware USART peripherals

• UART can be emulated via software using regular GPIO
• Limited speed, software overhead

• USART: Universal synchronous asynchronous receiver transmitter
• Can also support synchronous communication

• Supports 8-9 data bits
• Supports different parity settings
• 0.5, 1, 1.5 or 2 stop bits

• 1 stop bit is the default (most common)
• Some microcontrollers have more than one buffer registers

• Allows for queuing transmitted or received data if mcu
is overloaded.

• Supports speeds up to 10.5 Mbps

ME 319 Part I: The Brains – L8 Page: 16

UART Transmit Process
• To Transfer data through UART, data is written to UART transmit data register

one byte at a time (for 8N1 configuration)

Transmit Shift Register

UART Transmit Data RegisterWrite Data

Tx
Stop:1 b7 b6 b5 b4 b3 b2 b1 b0 Start: 0

Shift Clock

ME 319 Part I: The Brains – L8 Page: 17

UART Transmit Process
• To Transfer data through UART, data is written to UART transmit data register

one byte at a time (for 8N1 configuration)
• Data is transferred into the transmit shift register
• When the transmit bit (TE) is enabled, data on the shift register is transmitted

out on the TX pin
• First out: start bit, then LSB, etc, and finally the stop bit

Transmit Shift Register

UART Transmit Data RegisterWrite Data

Tx
Stop:1 b7 b6 b5 b4 b3 b2 b1 b0 Start: 0

Shift Clock

ME 319 Part I: The Brains – L8 Page: 18

UART Receive Process
• The UART recognizes a start bit and stop bit as they come into the shift

register
• The bits are shifted in the same order as the transmitter, Start,LSB .. MSB, Stop

Receive Shift Register

UART Receive Data RegisterRead Data

Rx
Stop:1 b7 b6 b5 b4 b3 b2 b1 b0 Start: 0

Shift Clock

ME 319 Part I: The Brains – L8 Page: 19

UART Receive Process
• The UART recognizes a start bit and stop bit as they come into the shift

register
• The bits are shifted in the same order as the transmitter, Start,LSB .. MSB, Stop
• Data is transferred from the shift register to the receive data register

• A flag bit (RXNE) is set: indicating the availability of new data.
• An interrupt can be generated (what’s the benefit?)

Receive Shift Register

UART Receive Data RegisterRead Data

Rx
Stop:1 b7 b6 b5 b4 b3 b2 b1 b0 Start: 0

Shift Clock

ME 319 Part I: The Brains – L8 Page: 20

Communication Speed - Example
• Given a 640x480 pixel 8-bit grayscale uncompressed image
• With a Baud Rate of 9600 and 8N1 UART
• How long would it take to transfer an image?

• Assuming an un-interrupted transfer
Image size in bytes : 640x480 = 307,200 bytes
Data Rate: 9600 𝑏𝑖𝑡𝑠/𝑠

10𝑏𝑖𝑡𝑠/𝑑𝑎𝑡𝑎𝑏𝑦𝑡𝑒
= 960 𝑑𝑎𝑡𝑎𝑏𝑦𝑡𝑒/𝑠

Image transfer rate = 307,200
960

=320 seconds/image
With 256000 Baud Rate -> =307,200

25600
= 12 𝑠𝑒𝑐𝑜𝑛𝑑𝑠/𝑖𝑚𝑎𝑔𝑒

• Hence the importance of image compression
• JPEG compression can shrink the image data size down to 2% of uncompressed size

• That’s why it’s hard to transfer and process images in real time on a microcontroller
• Limited compression/decompression ability and slow data transfer and memory capacity

for raw images.

ME 319 Part I: The Brains – L8 Page: 21

Example 1What is the minimum baud rate required to transmit the following array at 2000Hz?
If 8N1 UART frame is used.
Uint32_t array[30];

ME 319 Part I: The Brains – L8 Page: 22

Serial UART Functionalities on Arduino

5

#include <Arduino.h>
void setup(){
 Serial.begin(250000); /* 250000 is the baud rate */
 /* On Reading Characters wait for a max of 10ms for new characters */
 Serial.setTimeout(10);
 /* Flush the UART buffer, good for clearing backlog of characeters and only
 * caring about the latest received values */
 Serial.flush();

 /* Read from the buffer until a new line '\n' is detected */
 char buffer[10];
 Serial.readBytesUntil('\n', buffer, 10);

 /* Change which pins are TX/RX (must be compatible) */
 Serial.setTx(PB6);
 Serial.setRx(PB7);

 Serial.getTimeout(); /* */

 Serial.print("Hi"); /* Print without return line */
 Serial.println("Hi"); /* Print with return line */

 /* print with printf formatting */
 char buffer2[20];
 sprintf (buffer, "It's %d in the morning", 10.0);
 Serial.print(buffer);
};
void loop(){};

