Kuwait University College of Engineering and Petroleum

جامعة الكويت KUWAIT UNIVERSITY

ME319 MECHATRONICS

PART II: THE CELLS – ELECTRONIC CIRCUITS LECTURE 3: OPERATIONAL AMPLIFIERS

Spring 2021 Ali AlSaibie

Lesson Objectives

- Review the rules for an ideal operational amplifier
- Review common Op-Amp Configuration
- Learn how to read Op-Amp Datasheets

Why Op-Amps?

- Operational Amplifiers are fundamental in electronic applications:
 - Amplifying small range signals to higher range and vice versa
 - Sensing Applications
 - Current/Voltage Controlled Applications
 - Filtering and Signal Conditioning of Signals
 - Mathematical Operations: Add/Subtract/Differentiate/Integrate
 - Buffering
 - Digital Logic, to name a few
- Operational Amplifiers are **active** circuit components
 - The output current is produced from energy supplied to operate the op-amp, not from the input signals.

Operational-Amplifier

- The op-amp symbol is standard. A standard op-amp has 5 terminals.
- Note the $-V_s$, $+V_s$ are called the supply terminals, and may be omitted from an op-amp diagram for simplification.

Open-Loop Op-Amp

- This configuration, where no signal is fed back from the output to the input is:
 - An Open-Loop Configuration. *G* is the openloop gain

 $V_{out} = G(V_+ - V_-)$

• The open-loop gain of an **ideal** op-amp is infinite $+V_s$

Page: 5

Part II: The Cells – L3

Closed-Loop Op-Amp

- Op-Amps are used in a closed-loop configuration; usually negative feedback.
- The configuration of the feedback network defines the behavior of the op-amp

Ideal Op-Amp

• Three assumptions govern the ideal op-amp model

• No resistance between input voltage source and output

- There are two rules two follow for op-amps from which we derive all op-amps equations
- The rules are for an IDEAL op-amp
 - The ideal behavior is quite close to real for many applications
- RULE #1: The inputs draw no current.
 - No current goes into either the inverting or noninverting inputs.
 - The op-amp only **measures** the input voltages
- RULE #2: When operating in negative feedback, the output voltage will change as to cause both inputs to be the same $V_{out} \Rightarrow V_{-} = V_{+}$
 - This stems from the fact that the open-loop gain of an ideal op-amp is infinite.
 - An op-amp is practically always used with feedback.

Deriving Op-Amp Configuration Equations

- To derive the equation for an op-amp configuration, we just need:
 - Op-Amps Goldens Rules #1 & #2
 - Kirchhoff's **Voltage** and **Current Laws** $\sum_{k=1}^{n} i_k = 0, \sum_{k=1}^{n} V_k = 0$
- Let's derive the equations for a non-inverting op-amp
- Other op-amp configurations equations can be derived in a similar fashion

The Non-inverting Op-Amp Configuration

• Given Rule #1 (No current into inputs)

•
$$i_1 = i_2 \Rightarrow \frac{V_{out} - V_A}{R_f} = \frac{V_A - 0}{R_i}$$
(1)

- Given Rule #2 ($V_{-} = V_{+}$)
 - $V_A = V_- = V_+ = V_{in}$ (2)
- Then, substitute (2) into (1): $\frac{V_{out} - V_{in}}{R_f} = \frac{V_{in} - 0}{R_i} \Rightarrow \frac{V_{out}}{R_f} = \frac{V_{in}}{R_i} + \frac{V_{in}}{R_f}$ $V_{out} = V_{in}(1 + \frac{R_f}{R_i})$
- Then we can control the gain by choosing R_f , R_i
- Keep the values of R in the $1k\Omega$ to $200k\Omega$ range.

The Inverting Op-Amp Configuration

 V_{in}

• Given Rule #1 (No current into inputs)

•
$$i_1 = i_2 \Rightarrow \frac{V_{out} - V_A}{R_f} = \frac{V_A - V_{in}}{R_i}$$

- Given Rule #2 ($V_{-} = V_{+}$)
 - $V_A = 0$ (Virtual Ground)
- Then:

$$\frac{V_{out} - 0}{R_f} = \frac{0 - V_{in}}{R_i} \Rightarrow -\frac{V_{in}}{R_i} = \frac{V_{out}}{R_f}$$
$$V_{out} = -V_{in}(\frac{R_f}{R_i})$$

Note the input and output have opposite polarity (inverted)

Part II: The Cells – L3

حامعة الكوىت

The Summer and Difference Op-Amp Configurations

The difference configuration

Amplification relative to an offset

- Similar to a difference amplifier, but V_{ref} can be tuned using a voltage divider
 - Or even a variable resistor voltage divider
- This configuration can be useful in amplifying relative to an offset

$$V_{out} = \left(V_{ref} - V_{in}\right) \left(\frac{R_f}{R_i}\right) + V_{ref}$$
$$V_{ref} = V_s \frac{R_2}{(R_1 + R_2)}$$

Example, note the conf. is inverting: $V_{in}(t) = 6 + 2\sin(t), V_{ref}(t) = 5$, then $V_{out}(t) = (5 - (6 + 2\sin(t))\left(\frac{R_f}{R_i}\right) + 5$

حامعة الكوين

Offset Removal By AC Coupling

- By adding a capacitor in series with the input, the DC components can be blocked. AC components allowed through.
- Remember the impedance (resistance) of a capacitor:

Part II: The Cells – L3

Single Side vs. Dual Side Supply

- Op amps can either be single or dual side supply
- The output can only swing within the supply voltage range
- Dual side supply is required if output is expected to be AC (has negative values)
- Single side supply is simpler. Good for +DC range applications.

We have an analog pressure sensor. We expect to measure gauge pressure in the range [0*psi*, 20*psi*], which translates linearly to [0*mV*, 45*mV*].

We want to connect this sensor to one of the ADC pins on the STM32Nucleo, which can measure input voltages in the range [0,3.3V]

Which type of op-amp is suitable to use in this case?

Calculate the gain required and the resistor values in the feedback network.

Continue

Repeat the previous example but assume this time that the pressure readings translate linearly to [-10mV, 35mV] instead.

Which type of op-amp is suitable to use in this case?

Calculate the gain required and the resistor values in the feedback network.

Reading an Op-Amp Datasheet

- There are many options to choose from. There are general purpose and purpose specific op-amps to choose from. (Digikey Op-Amp Search)
- Key things to consider
 - Maximum Voltage and Current Capabilities
 - General Purpose or Specific Use
 - Dual vs. Single Side Supply
 - Bandwidth
 - Input offsets
 - Input Common Mode Voltage Range
 - Output Voltage Swing

LM324 Datasheet

- Explore the <u>linked</u> datasheet for LM324: A general purpose op-amp
- The LM324 actually encompasses 4 op-amps
- Single Side Supply: 3V to 32V
- Bandwidth: up to 1MHz
- Input offset Voltage: 2mV
- Input Common Mode Voltage Range: : 0 to $V_+ 1.5V$
- Output Voltage Swing: 0 to $V_{+} 1.5V$

Choosing an Op-Amp

• There are many options to choose from. There are general purpose and purpose specific op-amps to choose from. (Digikey Op-Amp Search)

Search Within Results	Q								Filter Options: Stacked
Manufacturer	Packagin	g	Series	Part Sta	tus	Amplifier Type	Number of Circ	cuits Output Type	Slew Rate
ABLIC U.S.A. Inc.	 Box 	*		Active	-		1	-	A - A
Advanced Linear Devices Inc.	Bulk	-		Discontinued at	Digi-Key Aud	oib	2	Differential	0.001V/µs
KM Semiconductor Inc.	Cut Tape (CT) Apex Precision	Power®	Last Time Buy	Bip	olar	3	Differential, Rail-to	-Rail 0.0012V/µs
	Digi-Reel®	Automotive		Not For New De	signs Buf	fer	4	Open Drain	0.0013V/µs
nalog Devices Inc.	Strip	Automotive, AD	10012	Obsolete	Cho	opper (Zero-Drift)	5	Push-Pull	0.0015V/µs
bex Microtechnology	Tape & Reel (TR) Automotive, AE	C-Q100	Preliminary	CM	IOS	6	Push-Pull, Rail-to-I	Rail 0.0018V/µs
oadcom Limited	Tray	Automotive, AE	C-Q100, e-trim™		Cu	rrent Feedback	8	Rail-to-Rail	0.002V/µs
	Tube	Automotive, AE	C-Q100, Excalibur™		Cu	rrent Sense	10	 Single-Ended 	0.0024V/µs
Sirrus Logic Inc.		Automotive, AE	C-Q100, LinCMOS™		Diff	erential	Min Max		0.0025V/µs
ialog Semiconductor GmbH	•	 Automotive, AE 	C-Q100, LMP®	·	- Ge	neral Purpose			
1.5kHz 2kHz 2.5kHz	400Hz 500Hz 1kHz	0.003pA 0.005pA 0.01pA	0.12µV 0.2µV 0.25µV		290nA 320nA 330nA	50μA 200μA 400μA	- Out of Bo ±1.35V ~	ounds 6V	-55°C ~ 125°C -55°C ~ 125°C (TA) -55°C ~ 140°C
7kHz	1.5kHz	0.02pA	250nV		350nA	450µA	±1.5V ~ 2	22V	-55°C ~ 150°C
(HZ	1.8KHZ	0.03pA	0.3µV		380nA	500µA	±1.8V ~ 5	0.5V	-55°C ~ 150°C (IA)
	Z.SKHZ	0.04pA	0.4µV		400NA	AUCC	±10.8V ~	13.ZV	-55 C ~ 175 C
▼		Adcoro	₩ 400NV	•	4201A	500µA	±10.8V~	20.4 V	-55 C ~ 210 C
lin Max kHz ▼	Min Max	Hz 🔻 Min M	ax pA ▼ Min	Max nV 🔻	450NA	Min Max	µA ▼ ±100√~	1200V	-50°C ~ 125°C
					400174		±10V - 1	▼	-50 0 125 0
Mounting Type	Package / Case		Supplier Dev	vice Package					
A	-		-	A					
Surface Mount	Die		0-DIESALE						
urface Mount, Gull Wing	Module		0-XCEPT						

Clear All Selections

ME 319

Apply Filters

