
ME 319 Part III: THE SENSES – L1 Page: 1

Kuwait University
College of Engineering and Petroleum

Spring 2021

ME319 MECHATRONICS
PART III: THE SENSES – SENSORS AND SIGNALS
LECTURE 1: SIGNAL CONDITIONING AND FILTERING

Ali AlSaibie

ME 319 Part III: THE SENSES – L1 Page: 2

Lesson Objectives
• Review the basics elements of signal conditioning
• Discuss passive filtering techniques
• Discuss digital filtering techniques

ME 319 Part III: THE SENSES – L1 Page: 3

Why Signal Conditioning?
• An analog signal, coming from a sensor for example, can have an

• Offset, or bias: A DC shift from the mean or actual value
• Poor range: A small voltage range, reduces reading precision
• Noise: Signal components not of interest

• Signal Conditioning is the process of eliminating the above issues
• A signal is offset, then
• The signal is scaled to maximize measurement resolution, then
• Signal noise is removed through noise filtering techniques.

ME 319 Part III: THE SENSES – L1 Page: 4

Signal Conditioning
• The following figure illustrates the steps involved in signal conditioning.

ME 319 Part III: THE SENSES – L1 Page: 5

Analog or Digital Signal Conditioning?
• While modern MCUs/DSPs can perform a wide range of signal conditioning

operations,
• There is always a good case for applying signal conditioning in circuit (Analog)
• A few of the reasons why:

• Lower CPU overhead
• Sampling limitations on the digital side
• Capturing a wider range of the “useful” signal

• A few of the limitations of analog signal processing:
• Varying signal dynamics
• Signal modeling uncertainty
• Cost/Complexity/Difficulty

ME 319 Part III: THE SENSES – L1 Page: 6

Offset Removal
• Consider the following voltage signal:

𝑉 𝑡 = 2 + 3.3sin(𝜔𝑡)

• If this signal is fed into an ADC, which can only handle 𝑉𝑟𝑎𝑛𝑔𝑒 = [−3.3𝑉, 3.3𝑉]

• The above signal, will clearly exceed the MCU input range

• We can amplify (scale down) the signal, to limit the maximum value to 3.3V
• But we will loose signal resolution on the ADC side

• Instead, we can remove the DC offset: 𝑉𝐷𝐶 = 2, from the signal, to achieve
𝑉(𝑡)−𝑜𝑓𝑓𝑠𝑒𝑡 = 3.3sin(𝜔𝑡)

ME 319 Part III: THE SENSES – L1 Page: 7

Offset Removal
• Offset removal can be achieved using a difference op-amp configuration

𝑽𝒐𝒖𝒕 = 𝑽𝟐 − 𝑽𝟏
𝑹𝒇

𝑹𝒊

• Where 𝑉1 = 𝑉𝐷𝐶 , the DC offset we wish to remove.

• Limitation:
• The DC offset must be accurately known.

ME 319 Part III: THE SENSES – L1 Page: 8

Offset Removal by AC Coupling
• If the DC offset is unknown, or varying, and we wish to completely remove the

DC component, we can add a capacitor in series to the op-amp input
• Removing DC components may not always be desired/required

𝑽𝒐𝒖𝒕 = (𝑽𝒊𝒏 − 𝑽𝑫𝑪) 𝟏 +
𝑹𝒇

𝑹𝒊

• We can remove DC offset and amplify

ME 319 Part III: THE SENSES – L1 Page: 9

Signal Amplifications
• Often, there are sensors that output values in the 𝑚𝑉 range.
• If the MCU ADC resolution is 2𝑚𝑉 for example, and the incoming signal range

is [0,10𝑚𝑉], there isn’t much resolution in the ADC converted signal.
• The digital value is practically useless.
• The precision is ±1𝑚𝑉, a 20% uncertainty of range.

• So, we try to amplify the signal to the full range of the ADC input.
• As discussed in the Op-Amps section.
• We amplify, linearly, the [0,10𝑚𝑉] range signal to [0,3.3𝑉] for example.

ME 319 Part III: THE SENSES – L1 Page: 10

Frequency Response
• To discuss filtering, it is important to review the concepts of frequency

response.
• Consider the following low-pass filter circuit.
𝑉𝑖𝑛 𝑡 = 𝑅𝑖 𝑡 +

1

𝐶
න𝑖 𝑡 𝑑𝑡 ⇒ 𝑉𝑖𝑛 𝑠 = 𝑅𝐼 𝑠 +

1

𝐶𝑠
𝐼 𝑠

𝑉𝑜𝑢𝑡 𝑡 =
1

𝐶
න𝑖 𝑡 𝑑𝑡 ⇒ 𝑉𝑜𝑢𝑡 𝑠 =

1

𝐶𝑠
𝐼 𝑠

The RC Filter transfer function:
𝐻 𝑠 =

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
1

𝑅𝐶𝑠 + 1

ME 319 Part III: THE SENSES – L1 Page: 11

Frequency Response
• At steady-state 𝑠 → 𝜔𝑗, the RC Filter transfer function becomes
𝐻 𝜔𝑗 =

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

1

𝑅𝐶𝜔𝑗+1
. This is a first-order system. With a corner frequency of 𝜔𝑐 =

1

𝑅𝐶

• If we plot the Magnitude |𝐻 𝜔𝑗 | and Phase response ∠𝐻(𝜔𝑗), for varying 𝜔, we get the Bode Plot

ME 319 Part III: THE SENSES – L1 Page: 12

Bode Plot
• A bode plot is the pair of magnitude response and phase response plots.

• The frequency is plotted on a log-scale
• The magnitude response is either plotted on a log scale or decibels (dB)

• 20𝑑𝐵 = 20 log 10 , −20𝑑𝐵 = 20log(0.1)
• Phase is plotted in degrees

• To convert from dB to decimal ratio
• 𝐴[𝑟𝑎𝑡𝑖𝑜] = 10

𝐴[𝑑𝐵]

20

• To convert from decimal ratio to 𝑑𝐵
• 𝐴 𝑑𝐵 = 20log10𝐴[𝑟𝑎𝑡𝑖𝑜]

ME 319 Part III: THE SENSES – L1 Page: 13

Bode Plot

ME 319 Part III: THE SENSES – L1 Page: 14

𝑆𝑖𝑔𝑛𝑎𝑙 = σ𝑆𝑖𝑔𝑛𝑎𝑙𝑠

• Using Fourier Transform:
• Continuous: 𝑥 𝑡 =

1

2𝜋
∞−
∞

𝑋 𝜔 𝑒𝑗𝜔𝑡𝑑𝜔

• Discrete: 𝑥 𝑘 =
1

𝑁
σ𝑘=0
𝑁−1𝑋𝑘𝑒

𝑖2𝜋𝑘𝑛/𝑁

• Fourier Analysis is outside the scope of this course, but the main idea is
• A signal is a weighted sum of single frequency components.
• Many signals we deal with can be approximated to have a small finite number

of frequency components.
• Example: 𝑥 𝑡 = 10 sin 1𝑡 + 𝜋 + 20 cos 100𝑡 +

𝜋

2
+ 0.5sin(1000𝑡)

• Is a weighted sum of three frequency components
@ 𝜔 = 1, 100&1000

ME 319 Part III: THE SENSES – L1 Page: 15

Filtering a Signal
• When filtering a signal, each frequency component gets amplified and shifted

independently, the output signal is the sum of the filtered frequency specific
components

ME 319 Part III: THE SENSES – L1 Page: 16

Filtering a Signal

ME 319 Part III: THE SENSES – L1 Page: 17

ExampleDerive the output signal function given the following Bode Plot and the
following input signal:

𝑢𝑖𝑛 = 10 sin 20𝑡 + 𝜋 + 100cos(100𝑡)

ME 319 Part III: THE SENSES – L1 Page: 18

ExamplePerform the following conversions
a. −20dB to decimal
b. 100 to 𝑑𝐵
c. 0.01 to 𝑑𝐵

ME 319 Part III: THE SENSES – L1 Page: 19

Filters
• Filters are categorized into the following
1. Low Pass Filter

• Low frequency components are preserved, high frequency ones blocked
2. High Pass Filter

• High frequency components are preserved, low frequency ones blocked
3. Band Pass Filter

• A range of frequency components preserved, higher and lower ones blocked
4. Notch Filter

• A narrow range of frequency components are preserved
• Or, a narrow range of frequency components are removed.

ME 319 Part III: THE SENSES – L1 Page: 20

Filter Types

ME 319 Part III: THE SENSES – L1 Page: 21

Simple First Order Low Pass Filter
• A first order filter is simple to implement
• It works well for noise that is at a much higher frequency than the signals’
• As the noise frequency approaches the signal frequency, it becomes hard to

implement a low pass filter successfully.
• The phase shift of a low pass filter starts early

• The required signal will be delayed
• The attenuation slope is slow (slow rollover rate)

• The noise can’t be attenuated well
• Higher order filters, with a sharper attenuation slop and sharp phase delay

curve can be used in such cases.

ME 319 Part III: THE SENSES – L1 Page: 22

Simple First Order Low Pass Filter
• Consider the first-order low pass filter given by the Bode Plot: 𝜔𝑐 = 100𝑟𝑎𝑑/𝑠

𝑢1 𝑖𝑛 = 10 sin 1𝑡 + 10 sin 1000𝑡 ⇒ 𝑢1𝑜𝑢𝑡 = 9.99 sin 1𝑡 − 0.01 + 0.99sin(1000𝑡 − 1.47)

𝑢2 𝑖𝑛 = 10 sin 10𝑡 + 10 sin 100𝑡 ⇒ 𝑢2𝑜𝑢𝑡 = 9.95 sin 1𝑡 − 0.1 + 7sin(100𝑡 − 0.78)

ME 319 Part III: THE SENSES – L1 Page: 23

Higher Order Filters
• The four classic analog filters are (comments are general guides, not always

accurate)
1. Butterworth

• Flat pass-band, poor attenuation rate, good phase response
2. Chebyshev

• Some pass-band ripple, good attenuation rate, good phase response
• For same order as Butterworth, sharper pass to stop band transition

3. Elliptic
• Some pass and stop band ripple, but best roll off rate (sharpest)

4. Bessel
• Poor roll off rate, but good phase response of all.

• The above filters don’t have a specific order. For each, the order is chosen.
• For Chebyshev and Elliptic, the ripple tolerance must be specified.

ME 319 Part III: THE SENSES – L1 Page: 24

Analog Low Pass Filters – 2nd Order

ME 319 Part III: THE SENSES – L1 Page: 25

Analog Low Pass Filters – 5th Order

ME 319 Part III: THE SENSES – L1 Page: 26

Butterworth Low Pass Filter – Varying Orders

ME 319 Part III: THE SENSES – L1 Page: 27

Passive vs. Active. Vs. Digital Filters
Analog Filters
• A filter can be constructed using passive electronic elements

• Using resisters, capacitors and inductors
• An RC Filter is a passive filter

• A filter can be constructed using active electronic elements
• Using op-amps and other components that require energy supply.

Digital Filters
• Filtering can be done on the software side inside a microcontroller

• Given sufficient sampling and signal resolution, a software filter can
emulate the effect of an electronic (in-circuit) filter.

ME 319 Part III: THE SENSES – L1 Page: 28

Digital Filters
• The same analog filters (and more), can be implemented in software as digital

filters.
• With digital implementation, the sampling time or the simulation time-step,

affects the performance of the filter.
• We can design a filter in the continuous domain and convert it into discrete

form. Then from the discrete filter transfer function we can get a difference
equation to implement in software

𝐻 𝑠 =
𝑌(𝑠)

𝑈(𝑠)
𝐶𝑜𝑛𝑡𝑖𝑛𝑜𝑢𝑠 𝑇.𝐹.

→𝑇 𝐻 𝑧 =
𝑌(𝑧)

𝑈(𝑧)
𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑇.𝐹.

→ 𝑦 𝑘 = ⋯
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛

ME 319 Part III: THE SENSES – L1 Page: 29

Continuous vs. Discrete Transfer Functions
• An analog filter can be expressed via a continuous transfer function 𝐻(𝑠)
• Digital filters can be expressed with a discrete transfer function 𝐻(𝑧)
• 𝑠 is the continuous domain complex variable, 𝑧 is the discrete domain variable
• 𝑧 = 𝑒𝑠𝑇 , where 𝑇 is the sampling time, or integration timestep.
• 𝑧 can be approximated via bilinear transform: 𝑧 = 1+𝑠𝑇/2

1−𝑠𝑇/2
→ 𝑠 =

2

𝑇

1−𝑧

1+𝑧

• In MATLAB, given a continuous domain transfer function
• Can discretize via c2d(): 𝐺 𝑠 =

1

𝑠/100+1
→𝑐2𝑑: 𝑇=0.01 𝐺 𝑧 =

0.632

𝑧−0.367

s = tf('s')

Gs = 1 / (s/100 + 1);

T = 0.01;

Gz = c2d(Gs,T)

ME 319 Part III: THE SENSES – L1 Page: 30

Discrete T.F. to Difference Equation
• A discrete transfer function can be conveniently converted into a difference

equation. (Analogous to converting a continuous T.F. to a differential eq.)
• A difference equation can be directly implemented in software.
• Given

𝐻 𝑧 =
𝑌 𝑧

𝑈 𝑧
=

𝑎𝑧 + 𝑏

𝑧2 + 𝑑𝑧 + 𝑒
=
𝑧−2

𝑧−2
𝑎𝑧 + 𝑏

𝑧2 + 𝑑𝑧 + 𝑒
=

𝑎𝑧−1 + 𝑏𝑧−2

1 + 𝑑𝑧−1 + 𝑒𝑧−2

1 + 𝑑𝑧−1 + 𝑒𝑧−2 𝑌 𝑧 = 𝑎𝑧−1 + 𝑏𝑧−2 𝑈(𝑧)

𝑦 𝑘 + 𝑑𝑦 𝑘 − 1 + 𝑒𝑦 𝑘 − 2 = 𝑎𝑢 𝑘 − 1 + 𝑏𝑢[𝑘 − 2]

𝒚 𝒌 = −𝒅𝒚 𝒌 − 𝟏 − 𝒆𝒚 𝒌 − 𝟐 + 𝒂𝒖 𝒌 − 𝟏 + 𝒃𝒖[𝒌 − 𝟐]

ME 319 Part III: THE SENSES – L1 Page: 31

ExampleGiven the following discrete transfer functions, derive the difference equation.
a. 𝐻 𝑧 =

0.8

𝑧−0.5

b. 𝐻 𝑧 =
0.2452𝑧+0.254

𝑧−0.59

ME 319 Part III: THE SENSES – L1 Page: 32

Software Implementation of a Difference Equation
• Implement: 𝑦 𝑘 = −𝑐𝑦 𝑘 − 1 + 𝑎𝑢 𝑘 + 𝑏𝑢[𝑘 − 1], in software

#include <iostream>

#include <cmath>

int main(){

 /* Create some input */

 float u[100];

 for (int k = 0; k<100; k++){ u[k] = sin(2*3.14*k/100); }

 /* Apply the filter H(z) = (a+bz^-1) / (1+cz^-1)

 * Apply the following difference equation

 * y[k] = a*u[k] + b*u[k-1] - c * y[k-1]

 */

 float y[100] ={0}; /* initialize to zero */

 int idx = 1; /* start from to reference idx - 1 */

 const int a=1, b=.5, c=.1;

 while(idx++ < 100){

 y[idx] = a*u[idx] + b*u[idx-1] - c * y[idx - 1];

 std::cout << y[idx] << std::endl;

 }
 return 0;

}

