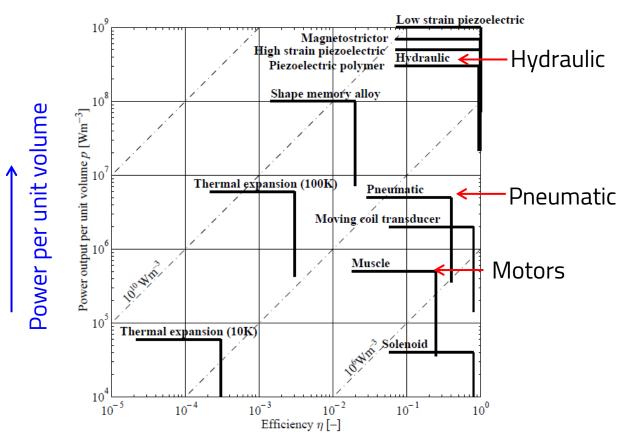
Kuwait University College of Engineering and Petroleum

جامعة الكويت KUWAIT UNIVERSITY


ME319 MECHATRONICS

PART IV: THE MUSCLES – ACTUATORS LECTURE 1: DC MOTORS

Spring 2021 Ali AlSaibie

Electric Actuators

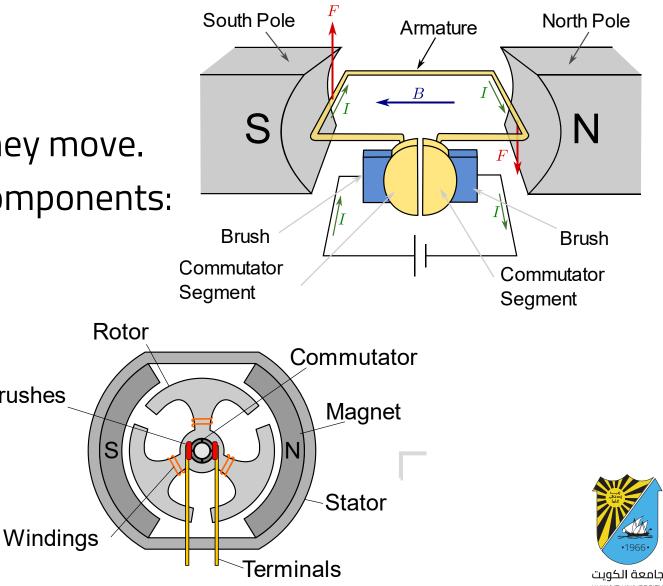
- Advantages of electric actuators
- Clean (do not require fluids, oil, etc.)
- Require no extra equipment (no need for pressure tanks, etc.)
- Can operate indoors (no emissions)
- Can be made small economically
- Disadvantages of electric actuators
- Low power-to-size ratio

Taken from: Huber, J., Fleck, N., Ashby, M., "The Selection of Mechanical Actuators Based on Performance Indices," Proc. R. Soc. Lond. A, Vol. 453, 1997, pp. 2185-2205.

Page: 2

ME 319 Mechatronics

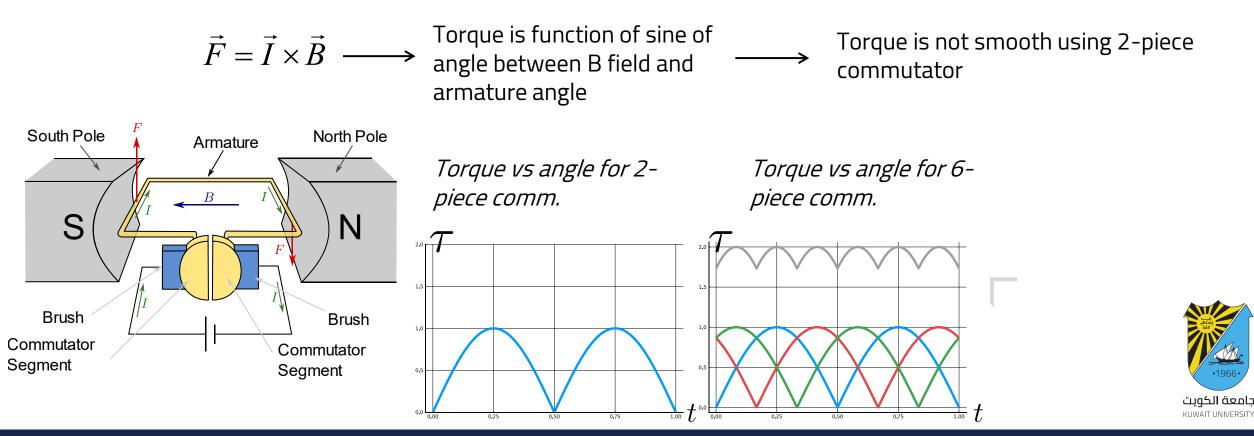
Electric Actuators


- Most commonly: Motors
 - Electric solenoids can be classified as electric actuators too
- Motors
 - Many different types, names, technologies
 - No uniform way to classify them
 - More logical classify by group rather than type (Operating principle)
- Motor *Groups* (Hughes' Electric Motors and Drives, 2013):
 - 1. Conventional DC Motors
 - 2. Induction Motors
 - 3. Synchronous and Brushless Permanent Magnet Motors
 - 4. Stepping and Switched-Reluctance

Conventional DC Motors

Brushes

- a.k.a Brushed DC Motors
 - The ones you find in most toys
 - Simple Operation
 - Supply voltage across them, they move.
- Brushed motors composed of two components:
 - Stator (remains stationary)
 - Rotor (turns, coupled to shaft)
- Lorentz's Law $\vec{F} = \vec{I} \times \vec{B}$
- Wire coil runs along back end of armature to generate B field
- Commutator used to change direction of current flow as armature rotates



Page: 4

ME 319 Mechatronics

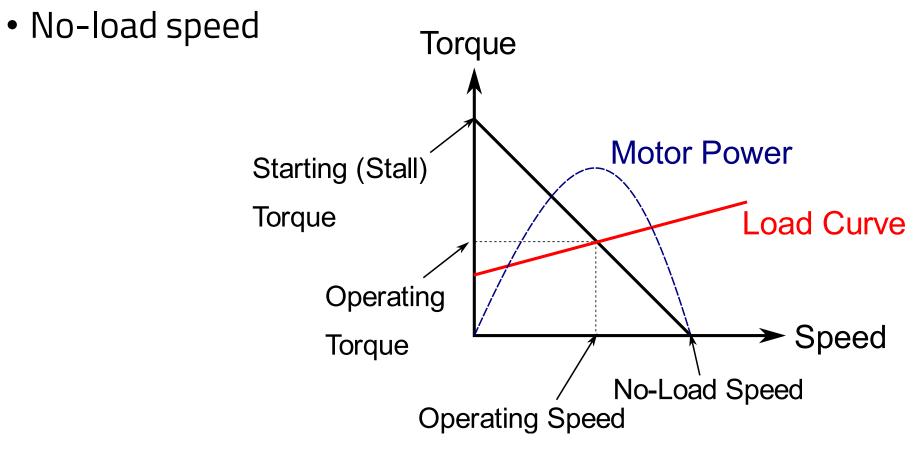
Conventional DC Motor Operation

- Commutator must be composed of at least two segments
 - Motors on previous page had 3-piece commutator (left) and 2-piece commutator (right)
- As motor turns, angle of energized coil with respect to magnet changes

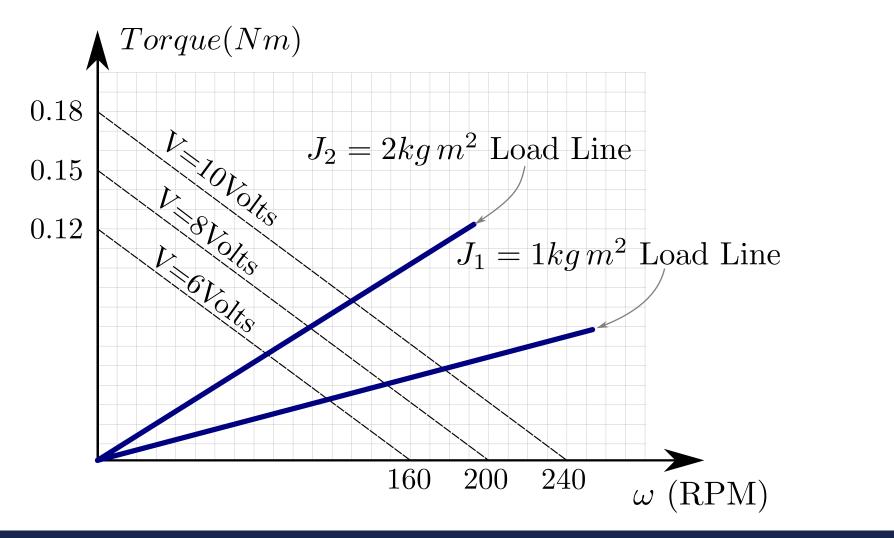
ME 319 Mechatronics

Part III: THE MUSCLES – L1

Brushed DC Motor

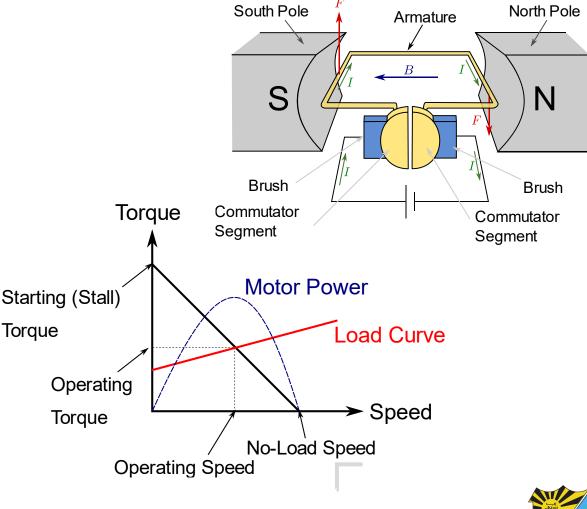


ME 319 Mechatronics


- Torque-speed curve defined by two parameters (Assuming linear torquespeed curve)
 - Starting (stall) torque max torque when speed is zero

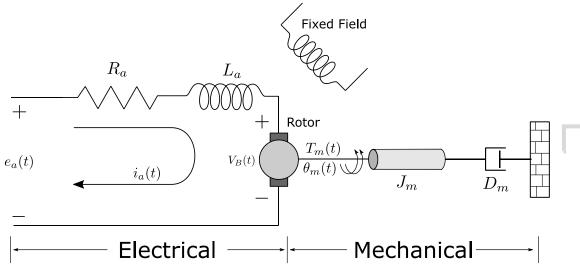
Torque – Speed Curve – conventional DC Motor

• Note that for a given load, we get the load line, which relates the output torque to various voltage values, and the corresponding speed



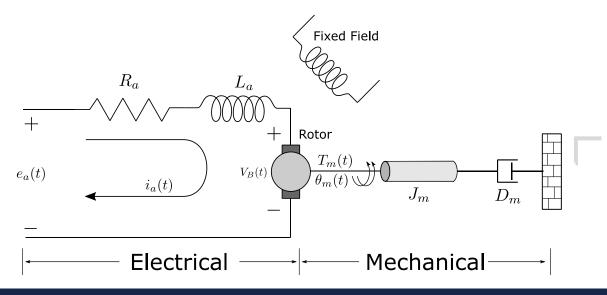
Page: 8

ME 319 Mechatronics


Conventional PM DC Motor Analysis

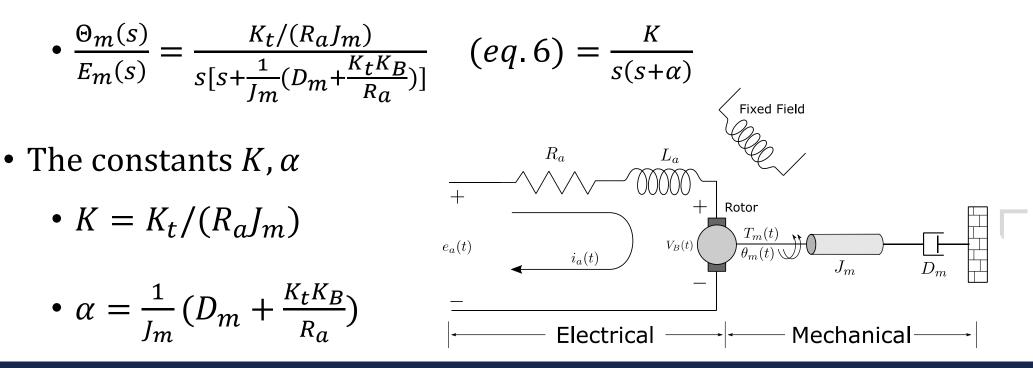
- As motor rotates, back EMF generated due to rotation of coil within magnetic field reduces voltage across motor leads and thus current through motor
- This is why torque decreases with speed
- Torque continues to decrease as ω increases until torque is zero at maximum speed
- Motor delivers maximum power when it reaches half of its no load speed: $P = T\omega$ (T = Torque)
- When motor drives a load, its operating speed will be where load torque equals motor torque
- If load torque increases linearly with speed, operating speed of motor will increase linearly with increase in supply voltage

- The DC Motor is modeled as a circuit + rotational mechanical system
- On the electrical side, we apply voltage across the coils which have resistance and inductance, modeled as R_a and L_a .
 - $R_a I_a(s) + L_a s I_a(s) + V_B(s) = E_a(s)$ (eq. 1)
- The motor is represented as a back-emf voltage in the circuit, $V_B(t)$.
 - $V_B = K_B \dot{\theta}_m \Leftrightarrow V_B(s) = K_B s \Theta_m(s)$ (eq.2)
 - *K_B*: back-emf constant

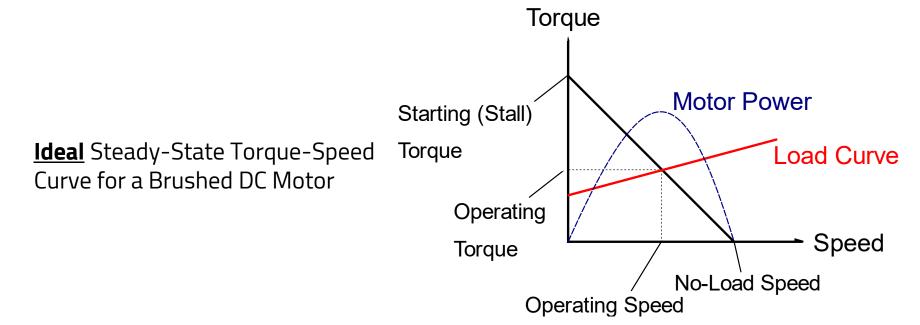


ME 319 Mechatronics

- The Fixed Field represents the permanent magnets' field.
- The torque developed by the motor is proportional to the field current.
 - $T_m(s) = K_t I_a(s)$ (eq. 3), K_t : motor torque constant
- Combining equations 1 to 3

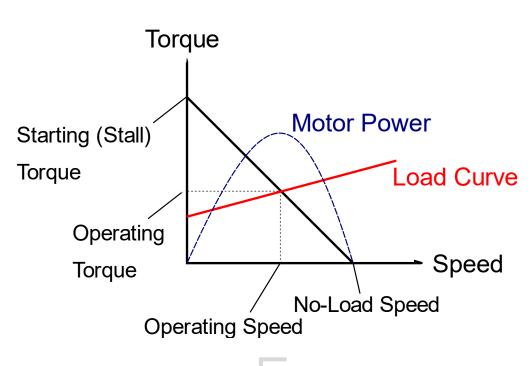

•
$$\frac{(R_a + L_a s)T_m(s)}{K_t} + K_B s \Theta_m(s) = E_a(s) \quad (eq.4)$$

ME 319 Mechatronics


- On the mechanical side, the motor itself has an inertia J_m , that rotates with angular velocity $\dot{\theta}_m$, in addition to mechanical bearing friction (viscous damping) D_m
 - $T_m(s) = (J_m s^2 + D_m s)\Theta_m(s)$ (eq. 5)
- Combining equations 4 & 5, and rearranging to express $\frac{\Theta_m(s)}{E_m(s)}$, ignoring L_a as $R_a/L_a\gg 1$

ME 319 Mechatronics

- How do we find the constants' values?
- A dynamometer can be used to generate a profile of the motor
- A dynamometer is a test bench for motors, allows for changing mechanical load, changing supplied voltage and measuring generated torque and current consumed. The generated profile is a torque-speed curve.


Note: If you search for Torque-Speed curves you will get different shaped curves, those are for different types of motors or different assumptions made or different operating conditions, but the key characteristics above apply.

ME 319 Mechatronics

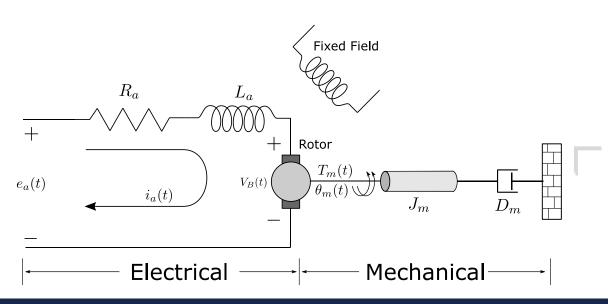
DC Motor – Profiling Steady-State Characteristics

- From equation 4, if we consider the steady-state response of the motor, we can simplify by setting
 inductance L_a = 0, we get
 - $\frac{R_a}{K_t}T_m(s) + K_B s \Theta_m(s) = E_a(s)$ (eq.6)
- Taking $\mathcal{L}^{-1}(eq.6)$ and rearranging • $T_m(t) = -\frac{K_B K_t}{R_a} \omega_m(t) + \frac{K_t}{R_a} e_a(t)$ (eq. 7) • Equation 7 matches the Torque-Speed Curve • Stall is when $\omega_m = 0$ • $T_m(t) = \frac{K_t}{R_a} e_a(t)$: Stall Torque
- No Load Speed is when $T_m(t) = 0$, • $\omega_{no \ load} = \frac{e_a}{K_B}$: **No Load Speed**
- The constants can then be computed from the dyno generated curves.

Ideal Steady-State Torque-Speed

Curve for a Brushed DC Motor

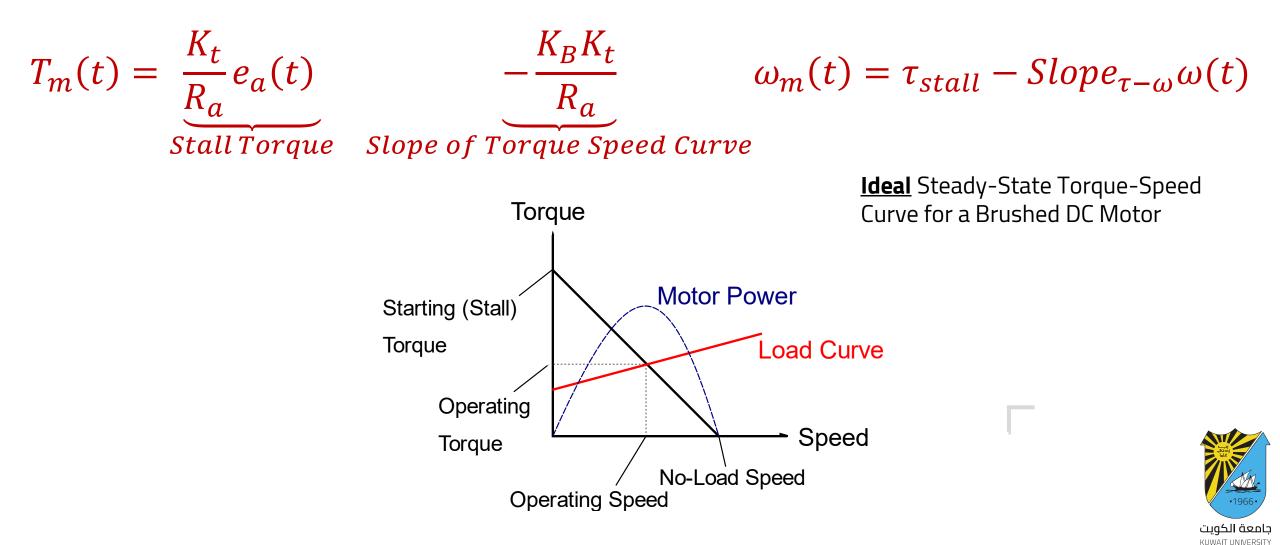
Page: 14


ME 319 Mechatronics

Summary

- DC Motor Model, Combining:
 - Electrical Part Gives: $R_a I_a(s) + L_a s I_a(s) + V_B(s) = E_a(s)$
 - Mechanical Part Gives: $T_m(s) = (J_m s^2 + D_m s)\Theta_m(s)$
 - Additional relationship 1: $V_B(s) = K_B s \Theta_m(s)$
 - Additional relationship 2: $T_m(s) = K_t I_a(s)$

• We get:


$\frac{\Theta_m(s)}{E_m(s)} = \frac{K_t/(R_a J_m)}{s[s + \frac{1}{J_m}(D_m + \frac{K_t K_B}{R_a})]}$

ME 319 Mechatronics

Summary

• Torque-Speed Curve

ME 319 Mechatronics

Part III: THE MUSCLES – L1

A 1/4 Hp DC motor is used to lift a 10 kg load via a pulley as shown. From the datasheet, the no-load motor speed is 300 rpm and starting torque is 23.8 N-m. Frictional resistance in pulley is 2 N-m (constant). Neglect inertia of rotor, pulley, and cable. Determine:

- a. Initial acceleration of load
- b. Steady-state speed of load
- c. Output horsepower of motor
- a. Initial Acceleration:

Total Torque at Startup $\tau_{Total} = \tau_{starting} - \tau_{friction} - \tau_{gravity}$ $\tau_{total} = 23.8 - 2 - 10 \cdot 9.81 \cdot 0.15 N - m = 7.1 N - m$ Acceleration of load due to this torque $F_{total} = \frac{\tau_{total}}{r} = \frac{7.1N - m}{0.15m} = 47.3N \rightarrow a = \frac{F}{m} = \frac{47.3N}{10kg} = 4.731m/s^2$

b. Steady-State Speed

At steady state, the load is not accelerating, and the net torque exerted is $\tau_{ss} = \tau_{frictional} + \tau_{gravity} = 2 + 10 \cdot 9.81 \cdot 0.15 = 16.7 N - m$

ME 319 Mechatronics

Part III: THE MUSCLES – L1

Load

Example

= 150mm

A 1/4 Hp DC motor is used to lift a 10 kg load via a pulley as shown. From the datasheet, the no-load motor speed is 300 rpm and starting torque is 23.8 N-m. Frictional resistance in pulley is 2 N-m (constant). Neglect inertia of rotor, pulley, and cable. Determine:

- a. Initial acceleration of load
- b. Steady-state speed of load
- c. Output horsepower of motor

Using the torque-speed equation, we can determine the steady-state speed

$$\tau_{motor} = \tau_{stall} - Slope_{\tau-\omega}\omega(t) = 23.8 - \underbrace{(23.8/300)}_{Slope of \ torque-speed \ curve} \omega = \tau_{ss} = 16.7$$

$$\omega = 89.5RPM \rightarrow v = \omega r = 89.5RPM \cdot \frac{2\pi}{60} \cdot 0.15m = 1.41m/s$$

c. Output Horsepower of Motor

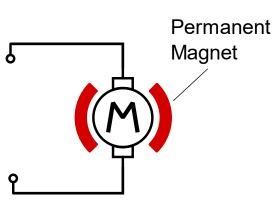
$$P = \tau \omega = 16.7N - m \cdot 89.5RPM \cdot \frac{2\pi}{60} \frac{1Hp}{746Watts} = 0.21Hp < P_{rated} = 0.25Hp$$

Page: 18

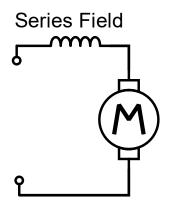
Example

= 150 mm

 ω


ME 319 Mechatronics

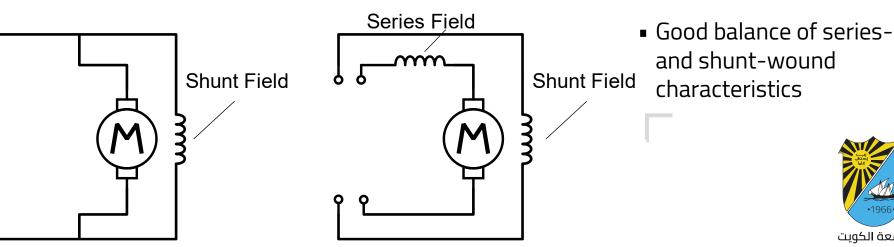
Conventional DC Motor Types


• There are 4 primary types of DC motors

PM DC Motor

- PM supplies flux field
- Good starting torque
- Can demagnetize permanent magnets if too much current supplied

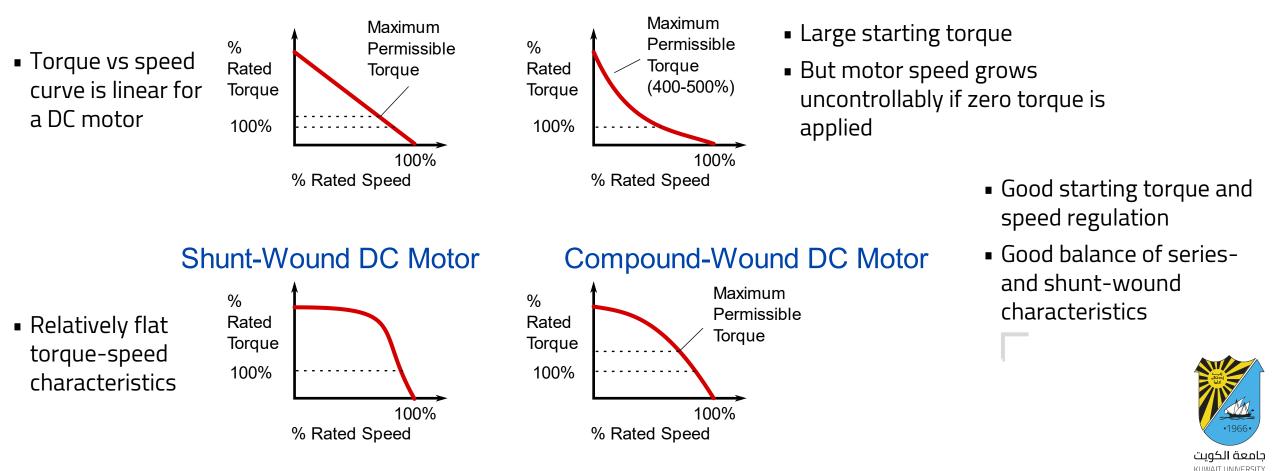
Series-Wound DC Motor



- Offers large starting torque
- Will fail if run with load disconnected
 - Good starting torque and speed regulation

Shunt-Wound DC Motor

- Offers nearly constant speed under varying loads (good speed regulation)
- Found in machine tools

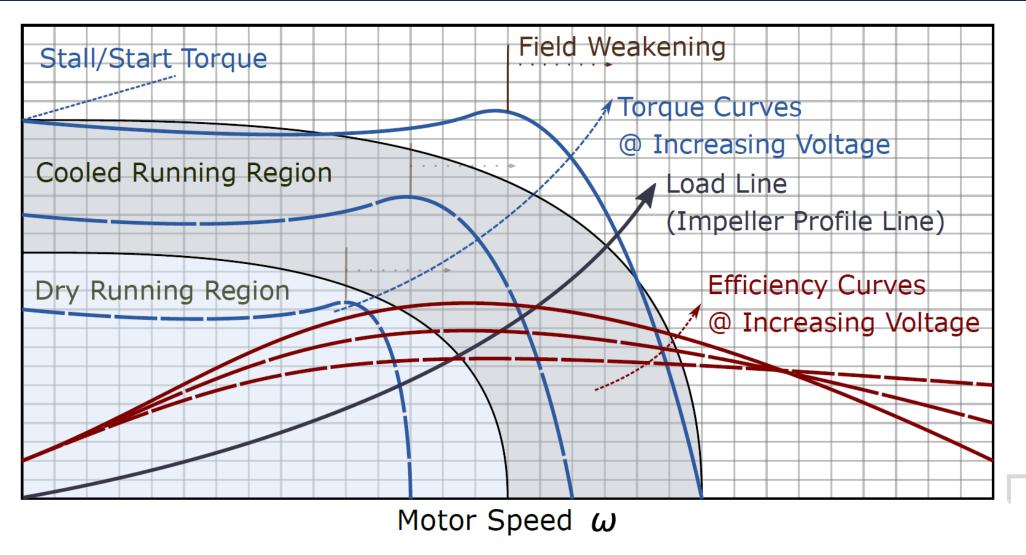


ME 319 Mechatronics

Conventional DC Motor Torque vs Speed Curves

- DC motors provide a varying amount of torque depending on operating speed
 - Generally torque decreases as motor runs faster

PM DC Motor



Series-Wound DC Motor

ME 319 Mechatronics

Part III: THE MUSCLES - L1

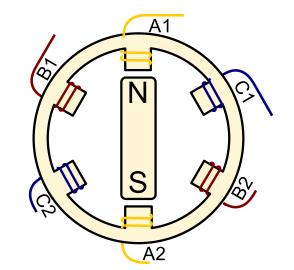
Motor Curve – Conceptual

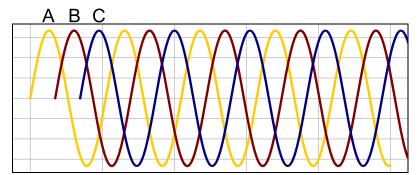
Mechatronic design of autonomous underwater vehicles for confined spaces, AlSaibie, PhD Thesis, 2018

ME 319 Mechatronics

Brushless PM DC Motors

- In brushed DC motors, brushes create mechanical point of contact between stator and rotor
 - Necessary in order to power wire coils on rotor
 - Generate heat and acoustic noise, must be replaced periodically
- Brushless DC motors do not use brushes
 - Only points of contact between rotor and stator are bearings
 - No direct wiring to rotor


Brushless Motor Names


- These are essentially the same type of motor:
 - Synchronous Machine
 - Permanent Magnet Synchronous Machine
 - Brushless Permanent Magnet Synchronous Motor
 - Brushless A.C. Motor
 - Brushless D.C. Motor
 - Permanent Magnet Servo Motor
- The different names serve to confuse us.
 - They may vary a bit, but principle of operation is the same.
- Just use the term: Brushless Motor (most common in mechatronics/robotics)

Brushless Motor Operation

- In brushless DC motor, rotor is made of permanent magnet and stator is made of coils
 - This is opposite of brushed motors
- Concept of operation:
 - Position of magnet is detected
 - Through hall-effect sensor
 - Or by measuring current (sensor-less operation)
 - Coil pairs are activated sequentially so that magnetic field is always perpendicular (as much as possible) to rotor magnet
 - Causes rotor to spin
 - Thus commutation is done electrically and not mechanically
 - In a conventional DC motor, the current switches direction when the shaft commutator rotates flips current direction

Page: 24

ME 319 Mechatronics

Brushless Motor

- Is it AC or DC?
 - It's a multi-phase (3-phase most commonly), that operates via principle of switching current direction (ac).
 - Why do they call it a Brushless DC motor sometimes?
 - Because the "controller" can be supplied a DC current, and the "controller" produces the ac like currents to the motor.
 - So to be specific the "controller" is dc. The motor itself is not.

Brushless DC Motor Advantages

- BLDC Rotor is lighter than on brushed motors
 - (+) BLDC's can operate at much higher speeds than DC motors
- BLCD does not use mechanical brushes for commutation
 - (+) BLDC's are more reliable since they do not generate much heat due to friction
 - (+) BLDC's are quieter
 - (+) BLDC's are more efficient since there are less frictional losses
 - (-) BLDC's require more complex circuitry to operate. They are also more expensive.

