Kuwait University College of Engineering and Petroleum

جامعة الكويت KUMAIT UNIVERSITY

ME417 CONTROL OF MECHANICAL SYSTEMS PART I: INTRODUCTION TO FEEDBACK CONTROL LECTURE 4: MECHANICAL SYSTEMS TRANSFER FUNCTIONS

Summer 2020 Ali AlSaibie

Lecture Plan

- Objectives:
	- Review Dynamic Modeling of Translational Mechanical Systems
	- Review Dynamic Modeling of Rotational Mechanical Systems
- Reading:
	- *Nise: 2.5.-2.7*
- Practice Problems Included

• The general form of the equation of motion for a mechanical system is:

$$
I(t, \ddot{q}) + D(t, q, \dot{q}) + K(q, t) = f(t, q)
$$

- Where I, D, K denote the inertial, damping and spring terms respectively, q is the general position coordinate, and f denotes the input force.
- In this course we treat linear, time-invariant systems
	- \bullet I, D, K are constants; they are
		- Not a function of time: time-invariant
		- Not a function of q or any other variable: Linear
- The general form of the equation of motion for a linear, time-invariant mechanical system is thus:

$$
I\frac{d^2q(t)}{dt} + D\frac{dq(t)}{dt} + Kq(t) = f(t)
$$

For translational systems we use $x(t)$ instead of $q(t)$ For rotational system we use $\theta(t)$ instead of $q(t)$

Translational Mechanical Systems Components

- A system with one degree of freedom will give one equation of motion and thus one transfer function for one input.
- A system with two degrees of freedom will give two equations of motion, and thus two transfer functions for one input, etc.

Equation of Motion by Inspection – Impedance Method

- Impedance of a mechanical system is defined as $Z_m(s) = \frac{1}{2} s$ $F(\mathcal{S}%)=\sqrt{\mathcal{S}(\mathcal{S})}$ $X(\mathcal{S}%)=\{(\mathcal{S}_{\alpha}^{\ast}\times\mathcal{S}_{\alpha}^{\alpha})\mid\leq\alpha\}\subset\mathcal{S}_{\alpha}^{\alpha}%$
- We can derive the EOM by visual inspection by noting that

[Sum of Impedances] $X(s) =$ [Sum of Applied Forces]

• For a two-degree of freedom system

Cramer's Rule

- The solution for $Ax = y$, where A is an invertible matrix is $x = A^{-1}y$
- When we have n **linear** equations with n unknowns, we can use Cramer's rule.
- Given two linear equations

$$
a_1x_1 + b_1x_2 = y_1
$$

\n
$$
a_2x_1 + b_2x_2 = y_2
$$

\n• We can find $x_1 = f(y)$, $x_2 = f(y)$ using Cramer's rule

$$
x_1 = \frac{b_2 y_1 - b_1 y_2}{\Delta}, \ x_2 = \frac{a_1 y_2 - a_2 y_1}{\Delta}
$$

$$
\Delta = \det(A) = a_1 b_2 - a_2 b_1, A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}
$$

• Cramer's rule is useful in decoupling the variables when deriving the Transfer Function from the Laplace Transform of 2nd or higher order linear systems.

Find the transfer function $G_2(s) = \frac{X_2(s)}{F(s)}$, for the $\frac{F(0)}{F(s)}$, for the system shown on the figure, using the impedance method.

 $\overline{f_{v2}}$

Rotational Mechanical Systems Components

Transfer Function for Mechanical Systems with Gears

- In this course we assume lossless gears
	- No backlash in gears
	- Linear interaction between the gears:

$$
\frac{\theta_2}{\theta_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2} = \frac{T_1}{T_2}
$$

Transfer Function for Mechanical Systems with Gears

 $T_1(t) \theta_1(t)$

$$
(Is2 + fvs + K)\theta_2(s) = T_1(s)\frac{N_2}{N_1} \Rightarrow (Is2 + fvs + K)\frac{N_1}{N_2}\theta_1(s) = T_1(s)\frac{N_2}{N_1}
$$

$$
\Rightarrow \left(I\left(\frac{N_1}{N_2}\right)^2 s^2 + f_v\left(\frac{N_1}{N_2}\right)^2 s + K\left(\frac{N_1}{N_2}\right)^2\right) \theta_1(s) = T_1(s)
$$

Find the transfer function $G_1(s) = \frac{X_1(s)}{F(s)}$, for the $\frac{F_1(S)}{F(s)}$, for the system shown. Nise: Problem 2-26

