Kuwait University College of Engineering and Petroleum

جامعة الكويت KUWAIT UNIVERSITY

ME417 CONTROL OF MECHANICAL SYSTEMS PART I: INTRODUCTION TO FEEDBACK CONTROL LECTURE 4: MECHANICAL SYSTEMS TRANSFER FUNCTIONS

Summer 2020 Ali AlSaibie

Lecture Plan

- Objectives:
 - Review Dynamic Modeling of Translational Mechanical Systems
 - Review Dynamic Modeling of Rotational Mechanical Systems
- Reading:
 - Nise: 2.5.-2.7
- Practice Problems Included

• The general form of the equation of motion for a mechanical system is:

$$I(t,\ddot{q}) + D(t,q,\dot{q}) + K(q,t) = f(t,q)$$

Where *I*, *D*, *K* denote the inertial, damping and spring terms respectively, *q* is the general position coordinate, and *f* denotes the input force.

- In this course we treat linear, time-invariant systems
 - *I*, *D*, *K* are constants; they are
 - Not a function of time: time-invariant
 - Not a function of q or any other variable: Linear
- The general form of the equation of motion for a linear, time-invariant mechanical system is thus:

$$I\frac{d^2q(t)}{dt} + D\frac{dq(t)}{dt} + Kq(t) = f(t)$$

For translational systems we use x(t) instead of q(t)For rotational system we use $\theta(t)$ instead of q(t)

ME 417 Summer 2020

Translational Mechanical Systems Components

ME 417 Summer 2020

Degrees of freedom

- A system with one degree of freedom will give one equation of motion and thus one transfer function for one input.
- A system with two degrees of freedom will give two equations of motion, and thus two transfer functions for one input, etc.

Part I: Introduction to Feedback Control – L4

Page: 6

Equation of Motion by Inspection – Impedance Method

- Impedance of a mechanical system is defined as $Z_m(s) = \frac{F(s)}{X(s)}$
- We can derive the EOM by visual inspection by noting that

[Sum of Impedances] X(s) = [Sum of Applied Forces]

• For a two-degree of freedom system

[Sum of Impedanc connected to the motion at <i>x</i> ₁]	es X ₁ (s) -	[Sum of Impedances between x_1 & x_2]	$X_2(s) =$	[Sum of Applied Forces at <i>x</i> ₁]
_ [Sum of Impedanc between $x_1 \& x_2$]	es X ₁ (s) +	[Sum of Impedances connected to the motion at x ₂]	$X_2(s) =$	[Sum of Applied Forces at x_2]
ME 417 Summer 2020		Part I: Introduction to Feedback Control – L4		

Cramer's Rule

- The solution for Ax = y, where A is an invertible matrix is $x = A^{-1}y$
- When we have *n* linear equations with *n* unknowns, we can use Cramer's rule.
- Given two linear equations

$$a_1x_1+b_1x_2=y_1$$

$$a_2x_1+b_2x_2=y_2$$

• We can find $x_1=f(y), x_2=f(y)$ using Cramer's rule

$$x_1 = \frac{b_2 y_1 - b_1 y_2}{\Delta}$$
, $x_2 = \frac{a_1 y_2 - a_2 y_1}{\Delta}$

$$\Delta = \det(A) = a_1 b_2 - a_2 b_1, A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$$

• Cramer's rule is useful in decoupling the variables when deriving the Transfer Function from the Laplace Transform of 2nd or higher order linear systems.

ME 417 Summer 2020

Find the transfer function $G_2(s) = \frac{X_2(s)}{F(s)}$, for the system shown on the figure, using the impedance method.

Example 2

 $\blacktriangleright x_1(t)$

 f_{v3}

 M_1

 f_{v1}

 K_1

f(t)

 $\rightarrow x_2(t)$

 M_2

 f_{v2}

Page: 9

ME 417 Summer 2020

Rotational Mechanical Systems Components

ME 417 Summer 2020

Transfer Function for Mechanical Systems with Gears

- In this course we assume lossless gears
 - No backlash in gears
 - Linear interaction between the gears:

$$\frac{\theta_2}{\theta_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2} = \frac{T_1}{T_2}$$

Transfer Function for Mechanical Systems with Gears

 $T_1(t) \theta_1(t)$

$$(Is^{2} + f_{v}s + K)\theta_{2}(s) = T_{1}(s)\frac{N_{2}}{N_{1}} \Rightarrow (Is^{2} + f_{v}s + K)\frac{N_{1}}{N_{2}}\theta_{1}(s) = T_{1}(s)\frac{N_{2}}{N_{1}}$$

$$\Rightarrow \left(I\left(\frac{N_1}{N_2}\right)^2 s^2 + f_{\nu}\left(\frac{N_1}{N_2}\right)^2 s + K\left(\frac{N_1}{N_2}\right)^2 \right) \theta_1(s) = T_1(s)$$

ME 417 Summer 2020

Find the transfer function $G_1(s) = \frac{X_1(s)}{F(s)}$, for the system shown. Nise: Problem 2-26

Practice Problem 1

Page: 14

ME 417 Summer 2020

Part I: Introduction to Feedback Control – L4

Page: 15

Part I: Introduction to Feedback Control – L4

Page: 16

