Kuwait University College of Engineering and Petroleum

جامعة الكويت KUMAIT UNIVERSITY

ME417 CONTROL OF MECHANICAL SYSTEMS

PART II: CONTROLLER DESIGN USING ROOT-LOCUS LECTURE 1: INTRODUCTION TO ROOT-LOCUS

Spring 2021 Ali AlSaibie

Lecture Plan

- Objectives:
	- Review the anatomy of a control system block diagram
	- Introduction to the concept of root-locus diagrams
	- Overview the properties of the root-locus
- Reading:
	- Nise: 8.1-8.3
- Practice problems are more applicable after the subsequent lectures.

Where we are

- We will now begin to introduce the first main technique of designing a controller.
- The design technique we will learn in this part is a graphical technique, it offers an alternative and qualitative method to understand the behavior of a dynamic system.
- It is also considered a way to represent the system and a method to analyze the performance (inherent to the design intent).

Review of Control System Block Diagram Anatomy: Unity Closed-Loop System

ME 417 Part II: Controller Design Using Root-Locus – L1 Page: 4

Open-Loop Transfer Function of a Non-Unity Feedback System

- The open-loop transfer function of a **any** feedback system is obtained by terminating the feedback signal at just before the summation block. And multiplying all the blocks in series up to the termination point.
- For a Non-Unity Feedback System, the open-loop transfer function is:

 $G_{ol} = G_C(s)G_P(s)H(s)$

- For the following unity feedback system. Derive the following: \Box Example
- a. The plant transfer function
- b. The controller transfer function
- c. The open-loop transfer function without feedback
	- (The open-loop **system** T.F.)
- d. The open-loop transfer function with feedback
- e. The forward transfer function
- f. The closed-loop transfer function
- g. The closed-loop characteristic polynomial
- h. The input to the plant in terms of the reference.
	- The controller design variables

For the following unity feedback system, place the: For the Hotel Hotel Example

- a. Plant poles and zeros
- b. Open-loop poles and zeros
- c. Closed-loop poles and zeros

What is a Root-Locus

• Given a feedback control system of the form

• With the equivalent open-loop **form**:

$$
R(s) \t C_{cl}(s) = \frac{KG(s)}{1+KG(s)} C(s)
$$

• The root-locus is the locus of the roots of the characteristic polynomial of the closed-loop transfer function: $1 + KG_{ol} = 0$, on the s-plane, as K goes from 0 to ∞

Closed-Loop System Representation on the S-Plane

Closed-Loop System Representation on the S-Plane

The Locus of the Closed-Loop Poles as K goes from 0 to infinity (Root-Locus)

What if we have more than just one gain?

- The root locus is drawn for a single variable K, what if there is more than one gain in the feedback loop, as is the case when applying a PID controller?
- Take the **PI** Controller:

• We can factor out the proportional gain K_p as the root locus variable and fix the ratio K_I/K_p . The ratio $K_I/K_p = z_1$, determines the location of the added zero by the PI controller. The root-locus will become a variable of K_p

• Char. Poly.:
$$
1 + K_p \frac{(s+z_1)G(s)}{s} = 0
$$

We wish to apply a PI feedback controller on a dc motor to control its speed. **The assumple** Find the values of the gain K_I , if $K_p=1$, to achieve a settling time of 0.25s, when a step input of 10rad/s is applied.

Given the following unity feedback system, determine the location of the **Example** open-loop poles, then compute the characteristic polynomial for the closedloop system. How would you find the poles of the closed-loop sys? $R(s)$, $+\frac{1}{s}$

The open-loop transfer function is: $G_{ol} = G_c G_p = \frac{(s+5)(s+1)}{s(s+2)}$ $s(s^2+9)$

The poles of the open loop transfer function are the roots of the open-loop characteristic

polynomial: $s(s^2+9)=0 \Rightarrow s=0, \pm 3j$

The closed-loop transfer function is: $G_{cl} = \frac{G_c G_p}{1+G_c G_c}$ $1+G_C G_p$

The characteristic polynomial of the closed-loop system: $1 + G_c G_p = 0$

The poles of the closed-loop system are the roots of the closed-loop characteristic polynomial:

$$
1 + \frac{(s+5)}{s(s^2+9)} = s^3 + 10s + 5 = 0
$$

In order to find the poles of the closed loop system we need to factor a 3rd degree polynomial.

This becomes hard, but fortunately, we can use the root-locus technique to treat such case.

Why design via Root-Locus

- What if we want to:
- 1. Observe the effect of changing gain parameters on the system response
	- Where would the poles of the closed-loop system be as we change the gain K
- 2. Observe the effect of adding dynamic compensation to the closed loop system
	- What happens when we use a controller that adds poles and zeros to the closedloop system?

Example: PI Controller, $G_c=K_P$ $s + K_I/K_p$ $\overline{\mathcal{S}}$, adds a zero and a pole

- 3. Examine the sensitivity and stability of a closed loop system
	- How close are the closed-loop poles to stability?
- 4. Design controllers for higher order systems
	- It is hard to factor roots for polynomials of 3rd and higher order.
- A graphical controller design **technique**, such as the root-locus, can help us

Complex Numbers and Vector Representation

- The Laplace Function $F(s)$, is a function of the complex variable s, but how do we evaluate the function at any s ?
- If we have the function in factored form

$$
F(s) = \frac{\prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)} = \frac{(s + z_1)(s + z_2) \dots (s + z_m)}{(s + p_1)(s + p_2) \dots (s + p_n)}
$$

Where Π denotes product, m the number of zeros, n the number of poles

• The solution: $F(s) = M\angle\theta$

$$
M = \frac{\prod(\text{zero vector lengths})}{\prod(\text{pole vector lengths})}
$$

$$
\theta = \sum \text{zero angles} - \sum \text{pole angles} = \sum_{i=1}^{m} \angle (s + z_i) - \sum_{j=1}^{n} \angle (s + z_j)
$$

ME 417 Part II: Controller Design Using Root-Locus – L1 Page: 17

Properties of the Root-Locus

- Given the closed-loop transfer function
	- $G_{cl} =$ $KG(s$ $1+KG(s)H(s)$: non-unity feedback
- A pole, s, exists when the characteristic polynomial becomes zero:

 $1 + KG(s)H(s) = 0,$ $KG(s)H(s) = -1 = 1 \angle (2k+1)180^o$, $k = 0, \pm 1, \pm 2, \pm 3, ...$

Where -1 is represented in polar form as: $1\angle(2k+1)180^{\circ}$

- Also, the magnitude: $|KG(s)H(s)| = 1$
	- And if we assume $K \geq 0$ strictly. Then $K =$ 1 $|G(s)||H(s)$ (eq. 1)
- And angle: $\angle KG(s)H(s) = (2k + 1)180^o$ (eq. 2)
- In other words: for s to be a pole of the CL system it has to satisfy eq. 1 and eq. 2

Properties of the Root-Locus

- The root locus is the locus of pole locations in the s-plane for varying values of gain $K\geq 0$, in the closed loop transfer function $G_{cl}=$ $KG(S$ $1+KG(s)H(s)$, that satisfy the following two conditions:
	- 1. Magnitude Condition: $K =$ 1 $G(s)||H(s)$
	- 2. Angle Condition: $\angle KG(s)H(s) = (2k + 1)180^{\circ}$

ME 417 Part II: Controller Design Using Root-Locus – L1 Page: 20

For the feedback system shown, show that the point $s = -5 + 3.87i$, is on \Box Example - Solved

ME 417 Part II: Controller Design Using Root-Locus – L1 Page: 21