Kuwait University College of Engineering and Petroleum

جامعة الكويت KUMAIT UNIVERSITY

ME417 CONTROL OF MECHANICAL SYSTEMS

PART II: CONTROLLER DESIGN USING ROOT-LOCUS LECTURE 2: SKETCHING THE ROOT-LOCUS

Spring 2021 Ali AlSaibie

Lecture Plan

- Objectives:
	- Introduce guidelines on sketching the Root-Locus
	- Discuss methods of refining the Root-Locus
	- Discuss the use of the Root-Locus technique for varying different parameters
- Reading:
	- Nise: 8.4-8.5, 8.8
- Practice problems included

Closed-Loop System Representation on the S-Plane

The Locus of the Closed-Loop Poles as K goes from 0 to infinity (Root-Locus)

Properties of the Root-Locus

- The root locus is the locus of pole locations of the closed-loop transfer function $G_{cl} =$ $KG(S$ $1+KG(s)H(s)$,in the s-plane, for varying values of gain $K\geq 0$, that satisfy the following two conditions:
	- 1. Magnitude Condition: $K =$ 1 $G(s)||H(s)$
	- 2. Angle Condition: $\angle KG(s)H(s) = (2k + 1)180^{\circ}$

Plotting the Root-Locus

- Given an open-loop transfer function, we can plot the Root-Locus by varying the value of gain K from $0 \to \infty$, calculating the values of the closed-loop poles and plotting them, forming the Root-Locus plot.
- This can be done numerically (e.g. *rlocus()* in MATLAB), but it becomes tedious to do it by hand.
- Instead, we can *sketch* the root locus by following a few basic sketching rules.

Rules for Sketching the Root-Locus

- There are number of rules that, when followed, can help sketch the root-locus quite easily even for a high order transfer function.
- The first 5 rules can be used to rapidly sketch the root-locus by inspection, without any calculations; except for factoring the poles and zeros.
	- You should be able to directly sketch an approximate root-locus using these rules, just by inspecting the open-loop transfer function.
- The remaining rules are for **refining** the sketch and would require some calculations.

Rules for Sketching the Root-Locus

- 1. Number of Branches:
	- Number of branches = Number of closed-loop poles
- 2. Symmetry:
	- The Root-Locus is symmetric about the real axis
- 3. Real-Axis Segments:
	- On the real axis, the Root-Locus exists to the left of an odd number of real-axis open-loop pole or real-axis finite open-loop zero
- 4. Starting and Ending Points:
	- The Root-Locus begins at poles ($K = 0$) and ends at zeros ($K = \infty$)
- 5. Behavior at Infinity:
	- The Root-Locus approaches straight line asymptotes as the Root-Locus approaches infinity

Rules for Sketching the Root-Locus

- Let's review the Root-Locus sketching rules for a unity feedback system
	- The open-loop (forward) transfer function of the feedback system is:

 $G_{OL} = KG(s)$

حامعة الكوى

Root-Locus Sketching Rule #1: Number of Branches

• Number of branches of the Root-Locus equals the number of closed-loop poles

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 9

Root-Locus Sketching Rule #2: Symmetry

• The Root-Locus is symmetric about the real axis

جامعة الكويت

Root-Locus Sketching Rule #3: Real-Axis Segments

• On the real axis, the Root-Locus exists to the left of an odd number of real-axis open-loop pole or real-axis finite open-loop zero

Root-Locus Sketching Rule #4: Starting and Ending Points

- The Root-Locus begins at the finite and infinite poles of the open-loop transfer function (where $K = 0$), and ends at the finite and infinite zeros of the open-loop transfer function (where $K = \infty$)
- If there are *n* poles and *m* zeros, where $n > m$. There are $n m$ infinite zeros

Root-Locus Sketching Rule #5: Behavior at Infinity

• The Root-Locus approaches straight lines asymptotes as the locus approaches infinity. Further, the equation of the asymptotes is given by the real-axis intercept, σ_a and angle, θ_a as follows:

$$
\sigma_a = \frac{\sum Finite \ Poles - \sum Finite \ Zeros}{\#Finite \ Poles - \#Finite \ Zeros}
$$

$$
\theta_a = \frac{(2k+1)\pi}{\#Finite\ Poles - \#Finite\ Zeros}
$$

Where $k = 0, \pm 1, \pm 2, ...$ and the angle is given in radians with respect to the positive extension of the real axis.

Root-Locus Sketching Rule #5: Behavior at Infinity

- Consider the feedback system shown.
- Three zeros at infinity: Three asymptotes
- Real Axis Intercept:

$$
\sigma_a = \frac{(-1 - 2 - 4) - (-3)}{4 - 1} = -\frac{4}{3}
$$

• Slopes' angles:

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 14

جامعة الكويا

Root-Locus Sketching Rule #5: Behavior at Infinity

- Note that the asymptote angles can be obtained by quick inspection
- If n the number of poles and m the number of zeros of the open-loop transfer function:
- If $n = m$: No Asymptotes
- If $n m = 1$: 1 zero at ∞ , 1 asymptote with $\theta_n = \pi$
- If $n-m=2$: 2 zeros at ∞ , 2 asymptotes with $\theta_a=$ π $\frac{\pi}{2}$, $\theta_a =$ 3π 2
- If $n-m=3$: 3 zeros at ∞ , 3 asymptotes with $\theta_a=$ π $\frac{\pi}{3}$, $\theta_a = \pi$, $\theta_a =$ 5π 3
- If $n-m=4$: 4 zeros at ∞ , 4 asymptotes with $\theta_a=$ π $\frac{\pi}{4}$, $\theta_a =$ 3π $\frac{a}{4}$, $\theta_a =$ 5π $\frac{3\pi}{4}$, $\theta_a =$ 7π 4

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 16

ME 417 **Part II: Controller Design Using Root-Locus – L2** Page: 17

Sketch the root locus, by inspection, for the following open-loop transfer $\qquad \qquad \qquad$ Example 3 function, in a unity feedback system.

$$
G(s) = K \frac{(s+6)}{(s+1)(s+2)(s+3)}
$$

جامعة الكويت KUWAIT UNIVERSITY

Sketch the root locus, by inspection, for the following open-loop transfer **Fig. 1.1 Example 4** function, in a unity feedback system.

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 19

I IWAIT LINIVERSIT

Rules for Refining the Root-Locus Sketch

- With practice, the first 5 rules should be applied by inspection, the following rules can be used to refine the root-locus sketch
- 6. Real-axis break-away and break-In points
	- The root-locus breaks away from the real-axis at point of max gain and breaks in at point of min gain.
- 7. Calculation of the $j\omega$ axis crossing
	- The RL crosses the jw axis when $G(s) = G(j\omega)$, $s = 0 + j\omega$
- 8. Angles of departure and arrival
	- The RL departs from complex open-loop poles and arrives at complex open-loop zeros at angles that can be calculated.
- 9. Plotting and calibrating the root locus
	- All the points on the RL satisfy the relationship $\angle G(s)H(s) = (2k + 1)180^{\circ}$

Root-Locus Sketching Rule #6: Real-Axis break-away and break-In points

- Break-away points exists when there is a root-locus segment between two poles on the real-axis
- Break-in points exists when there is a root-locus segment between two zeros on the real axis.

Root-Locus Sketching Rule #6: Real-Axis break-away and break-In points

- The break-away point occurs at the point with maximum gain on the real axis segment.
	- Remember that the CL poles move **away** from the OL poles with increasing K
- The break-in point occurs at the point with minimum gain on the real axis segment.
	- Remember that the CL poles move **toward** the OL zeros with increasing K
- To find the break-away and break-in points, we use the closed-loop characteristic polynomial and differentiate the gain with respect to $s = \sigma$, we get values of σ which correspond to the break-away and break-in points.

Root-Locus Sketching Rule #6: Real-Axis break-away and break-In points

- Consider the feedback system shown
- CL char. poly. : $1+KG(s) = 1 + \frac{K(s-3)(s-5)}{(s+1)(s+2)}$ $s+1$ $(s+2)$ $= 0$

•
$$
\frac{K(s-3)(s-5)}{(s+1)(s+2)} = -1, K = \frac{-(s+1)(s+2)}{(s-3)(s-5)}
$$

- Substitute $s = \sigma$ to express the gain on the real-axis only, since $\omega j = 0$:
- $K = \frac{-(\sigma+1)(\sigma+2)}{(\sigma+2)(\sigma+1)}$ σ –3) $(\sigma$ –5 = $-(\sigma^2 + 3\sigma + 2)$ $(\sigma^2 - 8\sigma + 15)$ $=-1$
- The above function for K should give two discontinuous curves
- Differentiate K w.r.t to σ to find min/max

 $\cdot \frac{dK}{d\tau}$ $d\sigma$ = $(11\sigma^2 - 26\sigma - 61)$ $\frac{10^{-2} - 200 - 01}{\sigma^2 - 8\sigma + 15)^2} = 0$, gives $\sigma = -1.45, 3.82$

- Break-away point $\sigma_1 = -1.45$
- Break-in point $\sigma_2 = 3.82$

What happens to the closed-loop system here as we increase K?

Root-Locus Sketching Rule #7: Calculation of the $j\omega$ axis crossing

- The imaginary axis crossing occurs when the real component $\sigma = 0$
- To find the value of gain K where the crossing occurs, we sub $s = j\omega$ in the characteristic polynomial and solve for K (Positive values of K only, since we treat negative feedback systems)
- Given the characteristic polynomial: $KG(s)H(s) = -1$
	- Solve for K in $KG(j\omega)H(j\omega) = -1$, to find the $j\omega$ crossing location
	- Finding both the value of the gain K and the $j\omega$ intercept value of ω

Root-Locus Sketching Rule #7: Calculation of the $j\omega$ axis crossing

- Consider the feedback system shown.
- $KG(S)H(s) = \frac{K(s+3)}{s^4 + 7s^3 + 14s^2}$ s^4 +7s³+14s²+8s • Substitute $s = j\omega$, and simplify: $KG(j\omega)H(j\omega) =$ $(jK\omega + 3K)$ ω^4 – $j7\omega^3$ – $14\omega^2$ + $j8\omega$ $=-1$
- Gives: $-\omega^4 + j7\omega^3 + 14\omega^2 - j(8 + K)\omega - 3K = 0$
- Separate the real from the fake (j/k: imaginary): $real: -\omega^4 + 14\omega^2 - 3K = 0$ $imag: 7\omega^3 - (8 + K)\omega = 0$

• From image:
$$
\omega^2 = \frac{8+K}{7}
$$
, subs in real:
\n $-\left(\frac{8+K}{7}\right)^2 + 14\left(\frac{8+K}{7}\right) - 3K = 0$ What ha
\n $K^2 + 65K - 720 = 0 \Rightarrow K = -74.6,9.65$,

Take the positive
$$
K = 9.65
$$
, $\omega = \sqrt{\frac{8+9.65}{7}} = 1.59 rad/s$

Root-Locus Sketching Rule #8: Angles of departure and arrival

- To find the angle of departure of a complex pole, we choose a CL pole location very close to the complex pole, then satisfy the angle condition:
	- $\angle KG(s)H(s) = \pm (2k + 1)180^{\circ}$

$$
-\theta_1 - \theta_2 + \theta_3 - \theta_4 = -180^{\circ}
$$

\n
$$
\theta_1 = 180^{\circ} - 90^{\circ} + \tan^{-1}\left(\frac{4}{4}\right) - \tan^{-1}\left(\frac{4}{6}\right)
$$

\n
$$
\theta_1 = 180^{\circ} - 90^{\circ} + 45^{\circ} - 33.69^{\circ} = 101.31^{\circ}
$$

• Thus the angle of departure of the root-locus from the pole at $s = -4 + 4j$ is $\theta = 101.31^{\circ}$

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 26

Derive the open-loop transfer function and sketch a refined root- **Example** Example locus for the feedback system, for which the open-loop poles and zeros are shown on the s-plane.

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 27

جامعة الكويت (HWAIT HNIVERSIT

Derive the open-loop transfer function and sketch a refined root-locus for the feedback Faxample system, for which the open-loop poles and zeros are shown on the s-plane.

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 28

Generalized Root-Locus

- The root-locus technique is not restricted to varying the gain K in a feedback system. It can be used to design for other parameters in a controller.
- Consider the case where we have a PI controller and want to plot the rootlocus for varying location of the zero defined by $\rm z = K_I$ K_{P} , rather than varying the gain K_n
	- In other words: Our design goal is to place the zero of the PI Controller (designing for the integral component), for a given value of the proportional gain K_P

Generalized Root-Locus

- Let $K_p = 1$ for simplicity, then the characteristic polynomial becomes:
- $1 +$ $S+K_I$ $\frac{1}{s}G(s) = 0 \Rightarrow s + sG(s) + K_I G(s) = 0 \Rightarrow 1 + K_I$ $G(s)$ $s(1+G(s$ $= 0$
	- What we did is manipulate the characteristic poly into the unity feedback form.
- The manipulated open-loop t.f. for which K_I (the zero location added by the PI controller) is then: K_{I} $G(s)$ $s(1+G(s$
- We proceed to plot the root-locus, this time we get the closed-loop pole locations for varying values of K_I

ME 417 Part II: Controller Design Using Root-Locus – L2 Page: 31

Nise's 6th Global Edition: The Hotel Handler of Alliance Problems that The Practice Problems

8-1, 8-2, 8-3,8-6,8-11,8-18,8-23

The root-locus sketching parts only, the design components will be covered in the following lectures.

Almost all problems from 8-1 to 8-23 are good practice problems for learning how to sketch the root-locus.

