Kuwait University College of Engineering and Petroleum

جامعة الكويت KUWAIT UNIVERSITY

ME417 CONTROL OF MECHANICAL SYSTEMS PART II: CONTROLLER DESIGN USING ROOT-LOCUS LECTURE 5: IMPROVING TRANSIENT RESPONSE

Spring 2021 Ali AlSaibie

Lecture Plan

- Objectives:
 - Explore the use of ideal derivative compensators to improve transient response
 - Explore the use of a lead compensator to improve transient response
- Reading:
 - Nise: 9.3
- Practice problems included

Find the real axis locations of the closed-loop system's poles and zeros given the following:

$$G_c = 1, \ G_p = \frac{(s-3)(s-6)}{(s+1)(s+4)}$$

Is the closed-loop system stable at this point?

Find the imaginary component of the CL poles.

Warm-Up

Part II: Controller Design Using Root-Locus – L5

Page: 3

جامعة الكويت KUWAIT UNIVERSITY

Continue

Warm-Up Draw the root-locus of the system with $G_c = K$, then with a choice of an additional compensator poles and/or zeros, R(s) + C(s) G_p stabilize the system for all gains, and make the complex G_c root-locus intersect the $T_s = 1s$ line. $G_p = \frac{1}{(s+10)(s+2s+2)}$ s-plane $j\omega$ جامعة الكويت

Part II: Controller Design Using Root-Locus – L5

Continue

- What if the feedback system is unstable for some value of the proportional gain, and we would like to stabilize the system for all, or at least a higher range, of gain values?
- What if the performance we seek requires the dominant closed-loop poles to be placed outside the root-locus achieved with just a proportional or proportional-integral controllers
- We can change the location of the root-locus by adding appropriate compensators
 - Changing the shape of the root-locus means changing the possible locations of the closed-loop poles, thus affecting stability/transient response.

• A compensator can make a possibly unstable system, stable for all gain values.

• Compensation can increase the speed of response

ME 417

Page: 9

جامعة الكويت KUWAIT UNIVERSITY

• A compensator can increase the range of the gain for which the system is stable.

- A compensator can change the possible locations of the closed-loop poles for varying K
 - By changing the shape of the root-locus.

Part II: Controller Design Using Root-Locus – L5

حامعة الكوب

- For the same gain the system is stabilized with a compensator
 - Same gain does not mean same controller output range u(t)

- We will introduce two compensators that are used to improve transient response.
 - 1. Ideal Derivative Compensator (a.k.a PD: Proportional-Derivative Controller)
 - 2. Lead Compensator
- Remember that in the world of control, we are not limited to the abovementioned compensators, but they are widely used, nevertheless.
- The more complex the compensators, the more it is hard to implement them practically in a real control system.

Ideal Derivative Compensator (PD Controller)

- The ideal derivative compensator is also known as the Proportional-Derivative Controller. It seeks to:
 - Improve the transient response in the form of
 - Stabilization
 - Improve Settling Time
 - Reduce Over-shoot
 - Misplacement of the derivative zero can worsen the response
 - Places a zero on the real axis, in the LHP.
 - Requires active components to implement
 - Relies on differentiating the error signal
 - This can be unreliable for noise signals or signals with low sampling rate.

Ideal Derivative Compensator (PD Controller)

• The Ideal Derivative Compensator is of the form

$$G_c = K(s + z) = K_p + K_D s = K_D(s + K_P/K_D) = \frac{K_P}{T_D}(s + T_D)$$

Where $T_D = K_P/K_D$

- Note that with **PI** Control, the initial choice of K for the feedback system wasn't affected much by the addition of the integral controller. K ≈ K_P
- As long as the PI's zero location was close to the PI's pole
- But with **PD** Control, *the feedback gain is equal to the derivative gain*, $K = K_D$

Page: 15

T 7

Ideal Derivative Compensator (PD Controller) – How it works

The introduction of the zero by the PD Controller:

• Reduces the number of asymptotes; reducing the possibility that the rootlocus extends to the RHP.

• E.g. Instead of three asymptotes: $\frac{\pi}{3}$, $\frac{3\pi}{3}$, $\frac{5\pi}{3}$, get two asymptotes: $\frac{\pi}{2}$, $\frac{3\pi}{2}$

• Can reduce the affect of the slow decaying poles (low $\zeta \omega_n$ values), increasing the response rate of the system (reducing settling time).

• E.g: for $G_p = \frac{1}{(s+0.1)(s^2+4s+8)}$, the compensator $G_c = (s + 0.2)$, reduces the effect of the pole at 0.1

• Can increase damping by "pulling" the root locus from the complex space and toward the real axis (lowering θ , increasing $\zeta = cos\theta$)

Show, by computing the closed-loop transfer function, that the addition of the Ideal Derivative Compensator, increases the speed of the response of the system. Show again, using the root-locus.

$$G_p = \frac{1}{(s^2 + 2s + 2)}, G_{C\,uncomp} = 2, G_{C\,comp} = 2(s+1)$$

Example

 G_c

C(s)

 G_p

R(s) +

ME 417

Continue Example

Part II: Controller Design Using Root-Locus – L5 Page: 19

Designing a Compensator via Angle Contribution

- We can use the angle condition to place the compensator pole in order to produce the desired closed-loop pole location.
- Angle condition
- $\angle KG(s) = \angle \sum \theta_{zeros} \angle \sum \theta_{poles} = (2k+1)180^{o}$
- Example:
- $\theta_2 = 180 + \theta_1 + \theta_2 \theta_3$
- $\theta_2 = \tan^{-1}(\frac{4}{-6-z})$

Part II: Controller Design Using Root-Locus – L5 Page: 21

Example - Continue

Lead Compensator

- The purpose of the Lead Compensator and Ideal Derivative Compensator (PD Controller) are the same, they both seek to improve transient response
- The Lead Compensator doesn't require active circuits
 - Can be implemented using passive circuits
 - This is more relevant in electrical control systems
 - There are analogous passive lag and lead mechanical compensators
- The Lead Compensator reduces the affect of noise from the error derivative signal, compared to the PD Controller.
 - The compensator pole reduces the affect of the compensator zero
- It's of the form

$$G_c = K \frac{s+z}{s+p}$$

• Where $\theta_z - \theta_p = \theta_c$ is the angle contribution of the compensator that would place the closed-loop pole in the desired location.

Part II: Controller Design Using Root-Locus – L5 Page: 24

Example - Continue

Nise 6th Global Edition:

Practice Problems

9-8, 9-9, 9-11, 9-14, 9-16

