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Lecture Plan
• Objectives:

• Introduction to modeling in the time domain
• Treating the general state-space representation
• Converting from state-space to transfer function and back

• Reading:
• Nise: 3.1-3.6

• Practice Problems Included
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Why another representation?
• But why not just use transfer functions?
• Transfer functions are powerful. They help us understand dynamic 

systems behavior and they have a good set of tools (root-locus, bode 
plots)

• However, they are limited to 
1. Linear systems

• Real world systems are often nonlinear
2. Time-invariant systems

• Systems may change their properties over time
• High order systems produce mathematically complex transfer functions
• A transfer function can only relate one input to one output
• Multi-degree of freedom systems must be decoupled if T.F. 

representation is desired
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The state-space representation
• The general state-space representation is

ሶ𝒙 𝑡 ∈ ℛ𝑛×1 = 𝑓 𝒙, 𝑡, 𝒖 = 𝑨 𝒙, 𝑡 + 𝑩 𝒙, 𝑡

𝑦 𝑡 = 𝑪 𝒙, 𝑡 + 𝑫(𝒙, 𝑡)

𝑓(𝑥, 𝑡, 𝑢) is called the system model, which is a function of the system state 𝑥, time 𝑡 and 
the input to the system 𝑢
• Note that 𝑓(𝑥, 𝑡, 𝑢) correspond to the model function we use to simulate a general 

dynamic system numerically. 
• The state-space representation can represent

• Time-varying systems
• Nonlinear dynamics
• Multiple input and multiple outputs
• Matrix representation for complex systems

• Increasing system order increases matrix dimensions, rather than high order 
polynomial
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The state-space representation
• For linear time-invariant systems (the scope of this course) the representation 

is simplified to
ሶ𝒙 = 𝐀𝒙 + 𝐁𝒖
𝒚 = 𝐂𝒙 + 𝐃𝒖

𝒙 ∈ ℛ𝑛: State vector,  ሶ𝒙 ∈ ℛ𝑛: derivative of state vector,
𝐀 ∈ ℛ𝑛×𝑛: Constant System matrix, 𝐁 ∈ ℛ𝑛×𝑝: Constant Input matrix
𝒖 ∈ ℛ𝑝: Input vector, 
𝒚 ∈ ℛ𝑚: Output vector, 𝐂 ∈ ℛ𝑚×𝑛: Constant Output matrix, 
𝐃 ∈ ℛ𝑛×𝑝: Constant Feedforward matrix
▪∈ ℛ𝑛×𝑛: denotes the matrix size is 𝑛 × 𝑛 and its values are real
▪∈ ℛ𝑛: denotes the vector size is 𝑛 and its values are real
• 𝑛: Number of state variables, 𝑝: Number of inputs, 𝑚: Number of outputs
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Linear Algebra Flash Refresher
• Matrix Addition/Subtraction

𝐀1 +𝐀2 = 𝐁 ⇒
1 −2 3
0 2 −5
2 2 7

3𝑥3

+
−1 1 1
1 4 5
2 −2 7

3𝑥3

=
0 −1 4
1 6 0
4 0 14

3𝑥3

• Matrix Scaling
𝑐𝐀 = 𝐁 ⇒ 3

1 2 1
3 2 3
4 3 2

3𝑥3

=
3 6 3
9 6 9
12 9 6

3𝑥3

• Matrix Multiplication

𝐀𝑥 = 𝑦 ⇒
1 2 1
3 2 3
4 3 2

3𝑥3

ด

3
4
2
3𝑥1

=
ถ

13
23
28
3𝑥1

,       𝐀𝐁 = 𝐂 ⇒
1 2 3
0 4 2
2 1 2

3𝑥3

1 2 3
4 2 0
1 2 0

3𝑥3

=
12 12 3
18 12 0
8 10 6

3𝑥3
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Linear Algebra Flash Refresher
• Matrix Inverse

𝐀 ∈ ℛ𝑛×𝑛, 𝐀−1 =
𝑎𝑑𝑗 𝐀

𝑑𝑒𝑡 𝐀
,   𝐀𝐀−1 = 𝐈

• Matrix Adjugate
𝑓𝑜𝑟 𝐀 ∈ ℛ2×2,     𝐀 =

𝑎 𝑏
𝑐 𝑑

,     adj 𝐀 =
𝑑 −𝑏
−𝑐 𝑎

• Matrix Determinant
𝑓𝑜𝑟 𝐀 ∈ ℛ2×2,     𝐀 =

𝑎 𝑏
𝑐 𝑑

,     det 𝐀 = 𝐀 = 𝑎𝑏 − 𝑐𝑑

• Matrix Eigenvalues
𝜆𝑖 ∈ 𝒞𝑛 are the special constants of a matrix 𝐀 ∈ ℛ𝑛×𝑛, called the eigenvalues

𝐀𝑥 = 𝜆𝑖𝑥, 𝐴𝑥 − 𝜆𝑖𝑥 = 𝐀 − 𝜆𝑖𝐈 𝑥 = 0

The trivial solution is 𝑥 = 𝟎, while the nontrivial solution occurs if the determinant vanishes
det 𝐀 − 𝜆𝑖𝐈 = 0, 𝑖 = 1,2, … , 𝑛
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The state-space representation
• Consider the mass-spring-damper mechanical system
• The equation of motion is: 𝑀 ሷ𝑥 + 𝑓𝑣 ሶ𝑥 + 𝐾𝑥 = 𝑓 𝑡 = 𝑢 𝑡

• This is a second-order system, requiring 2 state variables

• Corresponding to the two derivatives

𝒙 =
𝑥1
𝑥2

=
𝑥
ሶ𝑥

ሶ𝒙 =
ሶ𝑥
ሷ𝑥
=

ሶ𝑥1
ሶ𝑥2
=

𝑥2
(𝑢 𝑡 − 𝑓𝑣 ሶ𝑥 − 𝐾𝑥)/𝑀 =

𝑥2
−𝑓𝑣/𝑀𝑥2 − 𝐾/𝑀𝑥1

+
0

𝑢 𝑡 /𝑀
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The state-space representation

ሶ𝒙 =
0 1

−𝐾/𝑀 −𝑓𝑣/𝑀

𝑥1
𝑥2

+
0

1/𝑀
𝑢 𝑡 = 𝐀𝒙 + 𝐁𝒖

𝑦 = 𝑥 = 𝑥1 = 1 0
𝑥1
𝑥2

+ 0 𝑢 𝑡 = 𝐂𝒙 + 𝐃𝒖

𝐀 ∈ ℛ𝟐×𝟐 =
0 1

−𝐾/𝑀 −𝑓𝑣/𝑀
,       𝐁 ∈ ℛ𝟐×𝟏 =

0
1/𝑀

, 

𝐂 ∈ ℛ𝟏×𝟐 = 1 0 ,       𝐃 ∈ 𝓡 = 𝟎

• In this course 𝐃 = 0
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Example 1Derive the dynamic model of the system 
shown in state-space form
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Example 1 - Continue
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The general state-space representation
• Given an nth order differential equation

𝑎𝑛
𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+⋯+ 𝑎1

𝑑𝑥

𝑑𝑡
+ 𝑎0𝑥 = 𝑓(𝑡)

• We can write it as n simultaneous first-order differential equations:

𝑑𝑥1
𝑑𝑡

= 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛−1𝑥𝑛−1 + 𝑎1𝑛𝑥𝑛 + 𝑏1𝑓(𝑡)

⋮
𝑑𝑥𝑖
𝑑𝑡

= 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 +⋯+ 𝑎𝑖𝑛−1𝑥𝑛−1 + 𝑎𝑖𝑛𝑥𝑛 + 𝑏𝑖𝑓(𝑡)

⋮
𝑑𝑥𝑛
𝑑𝑡

= 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑛𝑥𝑛 + 𝑏𝑛𝑓(𝑡)
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The general state-space representation
• In state-space form, a general nth-order set of differential equations can be 

represented as:
ሶ𝒙 =

ሶ𝑥1
⋮
ሶ𝑥𝑛

=

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

𝑥1
⋮
𝑥𝑛

+
𝑏1
⋮
𝑏𝑛

𝑓(𝑡)

• The output 𝑦 depends on what we are measuring. If state 𝑥1 is the output then:
𝒚 = 1 0 ⋯ 0

𝑥1
⋮
𝑥𝑛

+ 0

• Note that we use 𝑦(𝑡) or 𝑐(𝑡) interchangeably, to express the output. In state-
space, it is common convention to use 𝑦(𝑡) for the output.
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From Transfer Function to State-Space
• To convert a transfer function into state space, we first convert it to differential equation form
• Given: 𝐺 𝑠 =

𝐶 𝑠

𝑈 𝑠
=

𝑏0

𝑎𝑛𝑠
𝑛+𝑎𝑛−1𝑠

𝑛−1+⋯+𝑎1𝑠+𝑎0
, converting to diff. eq.

• Gives: 𝑎𝑛 𝑑𝑛𝑐(𝑡)

𝑑𝑡𝑛
+ 𝑎𝑛

𝑑𝑛𝑐(𝑡)

𝑑𝑡𝑛
+⋯+ 𝑎1

𝑑𝑐 𝑡

𝑑𝑡
+ 𝑎0𝑐(𝑡) = 𝑏0𝑢(𝑡)

• An nth order diff. eq. gives 𝑛 states

𝒙 =

𝑥1
⋮
𝑥𝑛

= 𝑐 𝑑𝑐/𝑑𝑡 … 𝑑𝑛−1𝑐/𝑑𝑡𝑛−1 𝑑𝑛𝑐/𝑑𝑡𝑛 𝑇

ሶ𝒙 =
ሶ𝑥1
⋮
ሶ𝑥𝑛

=

0 1 0 … … …
… 0 1 0 … …
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
… … … 0 1 0
… … … … 0 1

𝑎0/𝑎𝑛 𝑎1/𝑎𝑛 … … 𝑎𝑛−2/𝑎𝑛 𝑎𝑛−1/𝑎𝑛

𝑥1
⋮
𝑥𝑛

+

0
⋮
0

1/𝑎𝑛

𝑢(𝑡)

𝑦 = 1 0 ⋯ 0

𝑥1
⋮
𝑥𝑛

+ 0
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From Transfer Function to State-Space
• The state-space form retrieved from the transfer function, is called a phase 

variable form
• Note the off-diagonal identity matrix, and how all the coefficients are 

grouped in the nth row

𝐴 =

0 1 0 … … …
… 0 1 0 … …
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
… … … 0 1 0
… … … … 0 1

𝑎0/𝑎𝑛 𝑎1/𝑎𝑛 … … 𝑎𝑛−2/𝑎𝑛 𝑎𝑛−1/𝑎𝑛
• Unlike the state-space form retrieved from the equations of motion directly.
• Both the standard, and phase variable forms are valid representations 
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Example 2 AConvert the following transfer function into state space form
𝐺 𝑠 =

𝑌 𝑠

𝑈 𝑠
=

1

𝑠 𝑠 + 3 + 5
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Example 2 BConvert the following transfer function into state space form
𝐺 𝑠 =

𝑌 𝑠

𝑈 𝑠
=

(𝑠 − 3)

𝑠 𝑠 + 9
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From State Space to Transfer Function 
• Given a state space representation of an LTI system, there is an analytical 

solution to expressing the system in transfer function form
• Given

ሶ𝒙 = 𝑨𝒙 + 𝑩𝒖
𝒚 = 𝑪𝒙 + 𝑫𝒖

• Take the Laplace transform of both sides, we get
𝑠𝑋 𝑠 = 𝑨𝑋 𝑠 + 𝑩𝑈(𝑠)
𝑌 𝑠 = 𝑪𝑋 𝑠 + 𝑫𝑈(𝑠)

• Solving for 𝑿(𝑠)
𝑠𝑰 − 𝑨 𝑋 𝑠 = 𝑩𝑈 𝑠 ⇒ 𝑋 𝑠 = 𝑠𝐈 − 𝑨 −1𝑩𝑈(s), where 𝐈 is the identity 

matrix
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From State Space to Transfer Function 
• Substituting 𝑋(𝑠) in 𝑌(𝑠)

𝑌 𝑠 = 𝐂 𝑠𝑰 − 𝐀 −1𝐁𝑈 s + 𝐃𝑈(𝑠)

𝑌 𝑠 = 𝐂 𝑠𝑰 − 𝐀 −1𝐁 + 𝐃 𝑈(𝒔)

• The term 𝐂 𝑠𝑰 − 𝐀 −1𝐁 + 𝐃 , is the transfer function matrix
𝐺 𝑠 =

𝑌(𝑠)

𝑈(𝑠)
= 𝐂 𝑠𝑰 − 𝐀 −1𝐁 + 𝐃

• The inverse term 𝑠𝑰 − 𝐀 −1, can be computed as
𝑠𝑰 − 𝐀 −1 =

𝑎𝑑𝑗(𝒔𝐈 − 𝐀)

𝑑𝑒𝑡(𝒔𝐈 − 𝐀)
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Example 3From the following system given in state-space form, find the transfer function
ሶ𝒙 =

5 3
2 3

𝒙 +
1
0
𝑢(𝑡)

𝒚 = 1 0 𝒙
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Example 4From the following system given in state-space form, represent the transfer 
function 𝐺2 𝑠 =

Θ2(𝑠)

𝑀(𝑠)
by the transfer function matrix, then compute using MATLAB

ሶ𝒙 =

0 1
−2 −3

0 0
2 3

0 0
2 3

0 1
−2 −3

𝒙 +

0
1
0
0

𝑢 𝑡 , 𝒚 =
1 0 0 0
0 0 1 0

𝒙,       𝒙 =
𝜃1
ሶ𝜃1
𝜃2
ሶ𝜃2
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From State Space to Transfer Function 
• Note that the term 𝑑𝑒𝑡(𝒔𝐈 − 𝐀), is the denominator of the transfer function. 
• In other words: it’s the characteristic equation for the transfer function.

• The roots of which are the poles of the system
• Note that the poles of the system are a function of the system matrix A
• So, stability can be evaluated by knowing the matrix A
• Remember that stability is defined in the context of the natural response (no 

input): ሶ𝒙 = 𝐀𝒙

• Also note that the poles of the system are the eigenvalues 𝜆𝑖 of the matrix A
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Example 5Is the following system stable?
ሶ𝒙 =

5 3
8 3

𝒙 +
0
1
𝑢(𝑡)

𝒚 = 1 0 𝒙
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Practice ProblemsNise 6th Global Edition:
3-4, 3-6, 3-9, 3-14, 3-17, 3-19, 3-28


