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Lecture Plan

* Objectives:
* Introduction to modeling in the time domain
* Treating the general state-space representation
 Converting from state-space to transfer function and back
* Reading:
* NVise: 3.7-3.6
* Practice Problems Included
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Why another representation?

* But why not just use transfer functions?

* Transfer functions are powerful. They help us understand dynamic
systems behavior and they have a good set of tools (root-locus, bode
plots)

* However, they are limited to

1. Linear systems
* Real world systems are often nonlinear
2. Time-invariant systems
 Systems may change their properties over time

 High order systems produce mathematically complex transfer functions
* A transfer function can only relate one input to one output

* Multi-degree of freedom systems must be decoupled if T.F. :
representation is desired

ME 417 Summer 2020 Part lll: Controller Design via State-Space — L1



The state-space representation

* The general state-space representation is
x(t) € R = f(x,t,u) = A(x,t) + B(x,t)

y(t) = C(x,t) + D(x,t)

f(x,t,u) is called the system model, which is a function of the system state x, time t and
the input to the system u

* Note that f(x, t,u) correspond to the model function we use to simulate a general
dynamic system numerically.

* The state-space representation can represent
* Time-varying systems
* Nonlinear dynamics
» Multiple input and multiple outputs
« Matrix representation for complex systems %
Vet

* Increasing system order increases matrix dimensions, rather than high order 2
polynomial
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The state-space representation

* For linear time-invariant systems (the scope of this course) the representation
Is simplified to
x = Ax + Bu
y = Cx + Du

x € R™: State vector, x € R™: derivative of state vector,

A € R™™: Constant System matrix, B € R™*P: Constant Input matrix

u € RP: Input vector,

y € R™: Output vector, C € R™ ™ Constant Output matrix,

D € R™*P: Constant Feedforward matrix

» € R™™: denotes the matrix size isn X n and its values are real

= ¢ R": denotes the vector size is n and its values are real %@
* n: Number of state variables, p: Number of inputs, m: Number of outputs
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Linear Algebra Flash Refresher

 Matrix Addition/Subtraction

1 -2 3 -1 1 1 0O -1 4
A, +A,=B=>|[0 2 -—5|+|1 4 5]=l1 6 o]
l2 2 741 L2 -2 71 4 o 14
3x3 3x3 3x3

* Matrix Scaling

4 3 21 112 9 6l
3x3 3x3
* Matrix Multiplication
1 2 17[3 13 1 2 371 2 3 12 12 3
Ax=y:>l3 2 3”4]=l23, AB:C:>[O 4 2”4 2 O]=l18 12 O]
4 3 2112 28 2 1 2111 2 0 8 10 6l
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Linear Algebra Flash Refresher

 Matrix Inverse

nxn aA-1 _ adj(A) -1 _
AeR™" A = Zet(A)’ AA™ =1
* Matrix Adjugate
d —b]

2%2 _la b i _
for A € R*4, A—[C gl adj(A) . 4

e Matrix Determinant
for A € R?*2, A= [CCl Z , det(A) =|A|=ab —cd

» Matrix Eigenvalues
A; € C™ are the special constants of a matrix A € R™*™, called the eigenvalues
Ax =4 x, Ax —Ax=A—-A4Dx=0

The trivial solution is x = 0, while the nontrivial solution occurs if the determinant vanishes
dettA— A1) =0,i=1,2,..,n
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The state-space representation

 Consider the mass-spring-damper mechanical system =)

» The equation of motion is: M% + f,x + Kx = f(t) = u(t) :|
* This is a second-order system, requiring 2 state variables K—l M f()
| |
' fo
* Corresponding to the two derivatives ¢
F(s) 1 X(s)
=[] =i MR
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The state-space representation

b (1
: 0 1 X 0 |
* [—K/M —f,,/M] [xﬂ T [1/M] u(t) = Ax + Bu T 0o
|| T M > f()
| |
y=x=x;=[1 0] [2]+[0]u(t)=Cx+Du | fo ¢
A € R = [_KE)/M —fvl/M]' B € RV = llfM]' e MsQ—I—}vS#—K 240

CerR? =1 0], DeER=0

e |n this course D =0 ‘
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Derive the dynamic model of the system Example 1

shown in state-space form -|—>r1(t) 1 (1)
RO I con I o
f(t) —> LT .
bl/ ba /)
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Example 1 - Continue
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The general state-space representation

* Given an nt" order differential equation
d"x d"1x dx
andn+an1dn1+ +a1d—+a0x—f(t)

* \We can write it as n simultaneous first-order differential equations:

dx]_
g 4t +apx; + o+ A1 X1 + QX + b1 f(E)
dxi
E = Q1% + QipXz + o+ Qi1 Xn—1 + AipXn + bif (1)
dx,

E = Ap1X1 T ApaXp + -+ App_1Xn_1 + AppXy + bnf(t) '
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The general state-space representation

* In state-space form, a general nt"-order set of differential equations can be
represented as:

X1] [@11 0 Q] [X1]  [by
x=|:i]=]: : S ES RN
_5Cn_ An1 ° Aunl Xn. -bn-
 The output y depends on what we are measuring. If state x; is the output then:
Xy
y=[1 0 - 0]|:[|+0
_x‘l’l_
* Note that we use y(t) or c(t) interchangeably, to express the output. In state-

space, it is common convention to use y(t) for the output.
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From Transfer Function to State-Space

» To convert a transfer function into state space, we first convert it to differential equation form

S 1 . _ C(S) _ bo . .
Given: G(s) = 0G) — asra T rasrad converting to diff. eq.
: d™c(t) d™c(t) dc(t)
* Gives: a, o tan— ot ta— + ayc(t) = bou(t)

 An nt" order diff. eq. gives n states

X1
X = I : ‘ =[c dc/dt .. d"ic/dt™t d"c/dt™]"
le

0 1 0 .. e ]
o A - T
xZLF e w01 o || || o [*®
n 0 1 " 1/ap)
ap/an ai/an ... .. An2/an Ap-1/an
xl q
y=I[1 0 - 0] + 0 Vi
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From Transfer Function to State-Space

 The state-space form retrieved from the transfer function, is called a phase
variable form

* Note the off-diagonal identity matrix, and how all the coefficients are
grouped in the nth row

0 1 0 ..
0 1 0
A= 0 1 0
0 1
ag/a, a/a, .. .. an_/a, a,_i/a,.

 Unlike the state-space form retrieved from the equations of motion directly.

 Both the standard, and phase variable forms are valid representations
Vet

cugall denla
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Convert the following transfer function into state space form Example 2 A
1

- Bl Y(s) B
&) = 05 "5 +5
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Convert the following transfer function into state space form Example 2 B

Y@ (s—3)
6) = 05 T 561 9)
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From State Space to Transfer Function

* Given a state space representation of an LTl system, there is an analytical
solution to expressing the system in transfer function form

e Given
x =Ax + Bu
y =Cx+ Du

* Take the Laplace transform of both sides, we get
sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)
* Solving for X(s)
(sI —A)X(s) =BU(s) = X(s) = (sI—A)~1BU(s), wherelis the identity
matrix
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From State Space to Transfer Function
* Substituting X(s) inY (s)
Y(s) = C((sI —A)"'BU(s)) + DU(s)
Y(s) = [c((sI —A)~!B) + D|U(s)

» The term [C((sI — A)™'B) + D|, is the transfer function matrix

Y(s) _
G(s) = Tom |C((sI —A)7'B) + D]
 Theinverse term (sI — A)~1, can be computed as
., adj(s1—A)
(ST=A)" = ot GT=A)
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From the following system given in state-space form, find the transfer
function 5o ;i P Example 3

=[5 ¥x+[Luw
y=I[1 0lx
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From the following system given in state-space form, represent the transfer Example 4

function G,(s) = 61:42((5)) by the transfer function matrix, then compute using MATLAB
‘0 1 0 01 [0 01

. _|-2 -3 2 3 1 1 0 0 O _ |61

=0 0o o 1x+0“(t)'3"oo1o]x' *=e,
2 3 -2 -3 0 0,
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From State Space to Transfer Function

* Note that the term det(sI — A), is the denominator of the transfer function.

* In other words: it's the characteristic equation for the transfer function.
* The roots of which are the poles of the system

* Note that the poles of the system are a function of the system matrix A
* S0, stability can be evaluated by knowing the matrix A

« Remember that stability is defined in the context of the natural response (no
input): x = Ax

* Also note that the poles of the system are the eigenvalues A; of the matrix A
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s the following system stable? Example 5

x=g g]x+[2]u(t)
y=[1 0]x
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Nise 6t" Global Edition: Practice Problems

3-4, 3-6, 3-9, 3-14, 3-17, 3-19, 3-28
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